

Ultra Low Power Comparator

Features

- Ultra Low Power Consumption:
 0.3µA (TYP) at V+ = 1.4V
- Wide Supply Voltage Range: 1.4V to 5.5V
- Propagation Delay: 8µs (TYP) at V+ = 1.4V
- Push-Pull Output Current Drive:23mA (TYP) at V+ = 5V
- Rail-to-Rail Input
- -40°C to 85°C Operating Temperature Range
- Available in the Green SC70-5, DFN1*1-6, DFN0.8*0.8-4 and DFN1.6*1.2-8 Packages

Applications

- RC Timers
- Window Detectors
- IR Receiver
- Multi-vibrators
- Alarm and Monitoring Circuits

Descriptions

The DIO20891/2 is an ultra low-power comparator with a typical power supply current of $0.3\mu A$. It has the best-in-class power supply current versus propagation delay performance. The propagation delay is as low as $8\mu s$ with 100mV overdrive at 1.4V supply.

Designed to operate over a wide range of supply voltages, from 1.4V to 5.5V, with guaranteed operation at 1.4V, 1.8V, 2.5V and 5.0V, the DIO20891/2 is ideal for use in a variety of battery-powered applications. With rail-to-rail common mode voltage range, the DIO20891/2 is well suited for single-supply or dual-supply operation.

Featuring a push-pull output stage, the DIO20891/2 allows for operation with absolute minimum power consumption when driving any capacitive or resistive load.

DIO20891/2 is available in the Green SC70-5, DFN1*1-6, DFN0.8*0.8-4 and DFN1.6*1.2-8 packages. The DIO20891/2 is ideal for use in handheld electronics and mobile phone applications. It is rated over the -40°C to 85°C temperature range.

Ordering Information

Order Part Number	Top Marking		T _A	Package		
DIO20891SC5	YW91	Green or RoHS	-40 to 85°C	SC70-5	Tape & Reel, 3000	
DIO20891EN6	9	Green or RoHS	-40 to 85°C	DFN1*1-6	Tape & Reel, 10000	
DIO20891CN4	9	Green or RoHS	-40 to 85°C	DFN0.8*0.8-4	Tape & Reel, 5000	
DIO20892EN8	YWJ2	Green or RoHS	-40 to 85°C	DFN1.6*1.2-8	Tape & Reel, 5000	

Pin Assignments

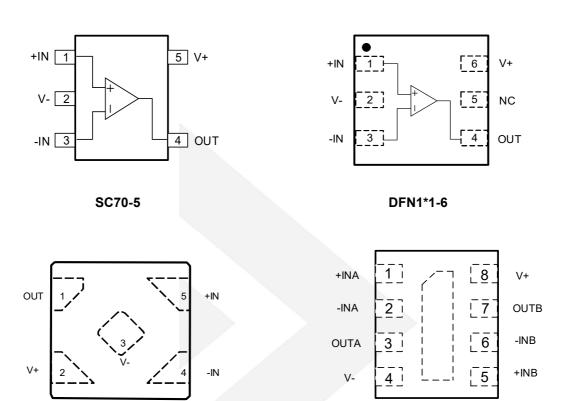


Figure 1 Pin Assignment (Top View)

DFN1.6*1.2-8

Pin Description

DFN0.8*0.8-4

Pin name	Description
+IN	Positive Input
V-	Negative supply
-IN	Negative Input
OUT	Output
V+	Positive supply
NC	No Connect

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Rating" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maxim rating conditions for extended periods may affect device reliability.

Parameter		Rating	Unit
Supply Voltage (V+ – V-)		7	V
Input Voltage		(V-)-0.3 to (V+)+0.3	V
Signal input terminals current		±10	mA
Output short circuit		Continuous	mA
Operating Temperature Range (T _A)		-40 to 85	°C
Storage Temperature Range (TsTo)		-65 to 150	°C
Junction Temperature (Tj)		160	°C
Lead Temperature Range		260	°C
ESD	HBM, JEDEC: JESD22-A114	8000	V

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation to ensure optimal performance to the datasheet specifications. DIOO does not recommend exceeding them or designing to Absolute Maximum Ratings.

·				
Parai	meter	Rating	Unit	
Supply Voltage		1.4 to 5.5	V	
Common-mode voltage range (V _{CM})	(V-)-0.1 to (V+)+0.1	V	
Quiescent current (per channel)	T _A = 25°C	500 (Max)	nA	
	T _A = -40°C to 85°C	1000 (Max)	nA	

Electrical Characteristics:

At T_A = 25°C, V_S = 1.4V to 5.5V, V_{CM} = $V_S/2$ and C_L = 15pF, unless otherwise noted.

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
OFFSET VOLTAGE						
Input Offset Voltage (1)	Vos	T _A = 25°C		±3	±5	mV
		T _A = -40°C to 85°C			±7	mV
		V _{CM} = 0.225V		20	22	mV
Hysteresis	V _{HYS}	V _{CM} = V _S /2		20.5	23	mV
Input offset voltage drift (1)	dV _{OS} /dT	T _A = -40°C to 85°C			±70	μV/°C
Power Supply Rejection Ratio ⁽²⁾	PSRR	V _{CC} =1.4V to 5.5V			500	μV/V
Common Mode Rejection Ratio ⁽²⁾	CMRR	V _{CC} =5V, V _{CM} =0.1V to 4.9V			1000	μV/V
INPUT BIAS CURRENT		35 / S.III				<u> </u>
Input bias current	I _B	T _A = -40°C to 85°C			20	nA
Input offset current (1)	ıB	1 _A = 40 0 to 60 0			20	
				8		pA _
Capacitive load drive	C _{LOAD}			60		pF
OUTPUT						
	Vон	$I_0 = 2.5$ mA, input overdrive ≥ 50 mV, $V_S = 5.5$ V		155	165	mV
		I_O = 2.5mA, input overdrive \geq 50mV, V _S = 5.5V, T _A = -40°C to 85°C			200	mV
		$I_0 \le 100 \mu A$, input overdrive $\ge 50 \text{mV}$, $V_S = 5.5 \text{V}$			6	mV
Voltage output swing from upper rail		$I_0 \le 100 \mu A$, input overdrive $\ge 50 \text{mV}$, $V_S = 5.5 \text{V}$, $T_A = -40 ^\circ \text{C}$ to $85 ^\circ \text{C}$			8	mV
		$I_0 \le 100 \mu A$, input overdrive $\ge 50 \text{mV}$, $V_S = 1.8 \text{V}$		20		mV
		$I_O \le 100\mu\text{A}$, input overdrive $\ge 50\text{mV}$, $V_S = 1.8\text{V}$, $T_A = -40^{\circ}\text{C}$ to 85°C			26	mV
	I V _{OL}	$I_O = 2.5$ mA, input overdrive ≥ 50 mV, $V_S = 5.5$ V		150		mV
		I_O = 2.5mA, input overdrive \geq 50mV, V_S = 5.5V, T_A = -40°C to 85°C			200	mV
Voltage output swing from lower rail		$I_0 \le 100 \mu A$, input overdrive $\ge 50 mV$, $V_S = 5.5 V$		6		mV
		$I_O \le 100\mu\text{A}$, input overdrive $\ge 50\text{mV}$, $V_S = 5.5\text{V}$, $T_A = -40^{\circ}\text{C}$ to 85°C			8	mV
		$I_0 \le 100 \mu A$, input overdrive $\ge 50 mV$, $V_S = 1.8 V$		16		mV
		$I_O \le 100\mu\text{A}$, input overdrive $\ge 50\text{mV}$, $V_S = 1.8\text{V}$, $T_A = -40^{\circ}\text{C}$ to 85°C			23	mV

Short circuit sink current	I _{sc}	V _S = 5V	24	mA
Short circuit source current		V _S = 5V	23	mA

Note (1): Guaranteed by Design.

Note (2): Guaranteed by Lab Test Data.

Switching Characteristics

At T_A = 25°C, V_S = 1.4V to 5.5V, V_{CM} = 0.225V, and C_L = 15pF, unless otherwise noted.

Parameter	Symbol	Condition		MIN	TYP	MAX	Unit
Propagation delay time	t _{PHL}	High-to-low	V _S = 1.8V, Input overdrive = 50mV		10		- µs
			V _S = 1.8V, Input overdrive = 100mV		7		
	t _{PLH}	Low-to-high	V _S = 1.8V, Input overdrive = 50mV		10		
			V _S = 1.8V, Input overdrive = 100mV		8		
Rise time	t _R	V _S = 1.8V, Input overdrive = 100mV			40		
Fall time	t _F	V _S = 1.8V, Input overdrive = 100mV			35		ns
Power up time	t _{PU}	VCC=0 to 1.4V, t _R =9ns			5		μs

CONTACT US

Dioo is a professional design and sales corporation for high-quality and performance analog semiconductors. The company focuses on industry markets, such as, cell phone, handheld products, laptop, and medical equipment and so on. Dioo's product families include analog signal processing and amplifying, LED drivers and charger IC. Go to http://www.dioo.com for a complete list of Dioo product families

For additional product information, or full datasheet, please contact with our Sales Department or Representatives.

