

Low-Voltage, 8-Channel I²C Switch with Reset

■ Features

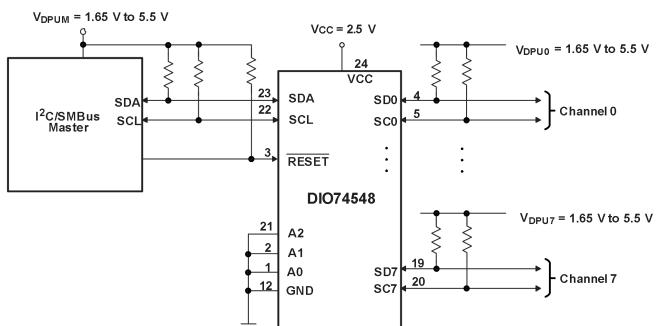
- 1-to-8 bidirectional translating switches
- I²C bus and SMBus compatible
- Active-low reset input
- Three address pins, allowing up to eight DIO74548 devices on the I²C bus
- Channel selection through an I²C bus, in any combination
- Power up with all switch channels deselected
- Low R_{ON} switches
- Allows voltage-level translation between 1.8 V, 2.5 V, 3.3 V, and 5 V buses
- No glitch on power-up
- Supports hot insertion
- Low standby current
- Operating power-supply voltage range: 1.65 V to 5.5 V
- Input tolerance: 5 V
- Clock frequency: 0 to 400 kHz

■ Applications

- Servers
- Routers (telecom switching equipment)
- Factory automation
- Products with I²C slave address conflicts

■ Package Information

Part Number	Package	Body Size
DIO74548	TSSOP-24	4.4 mm × 7.8 mm
	QFN-24	4 mm × 4 mm


■ Description

The DIO74548 is an 8-channel, bidirectional translating switch that can be controlled through the I²C bus. The SCL/SDA upstream signal pair fans out to eight downstream pairs, or channels. The contents of the programmable control register determine the pair or pairs of SCn/SDn to be selected. The downstream channels resolve the I²C slave address conflicts.

Either asserting the **RESET** pin low or cycling the power supply, which is called power-on reset (POR), resets the state machine of the device and deselect all channels if one of the downstream I²C buses get stuck in a low state.

The voltage conversion feature enables parts of 1.8 V, 2.5 V, or 3.3 V to communicate with 5 V parts without any additional protection by using external pull-up resistors to pull the bus to the desired voltage level for each channel. All I/O pins have a 5 V tolerance.

■ Simplified Schematic

■ Ordering Information

Part Number	Top Marking	MSL	RoHS	T _A	Package	
DIO74548CT24	DGDE4H	3	Green	-40 to 125°C	TSSOP-24	Tape & Reel, 2500
DIO74548CN24	DGDE4H	3	Green	-40 to 125°C	QFN4*4-24	Tape & Reel, 5000

If you encounter any issue in the process of using the device, please contact our customer service at marketing@dioo.com or phone us at (+86)-21-62116882. If you have any improvement suggestions regarding the datasheet, we encourage you to contact our technical writing team at docs@dioo.com. Your feedback is invaluable for us to provide a better user experience.

Table of Contents

1. Pin Assignment and Functions	1
2. Absolute Maximum Ratings	3
3. Recommended Operating Conditions	3
4. ESD Ratings	4
5. Thermal Considerations	4
6. Electrical Characteristics	5
7. Reset Timing Requirements	6
8. Switching Characteristics	7
9. Typical Performance Characteristics	8
10. Parameter Measurement Information	9
11. Block Diagram	11
12. Function Description	12
12.1. Device functional modes	12
12.2. Programming	13
13. Application Information	17
13.1. Typical application	17
13.2. Design requirements	17
13.3. Detailed design procedure	18
13.4. Application curves	18
14. Power Supply Recommendations	19
15. Layout Guidelines	20
16. Physical Dimensions	21
16.1. QFN4*4-24	21
16.2. TSSOP-24	22

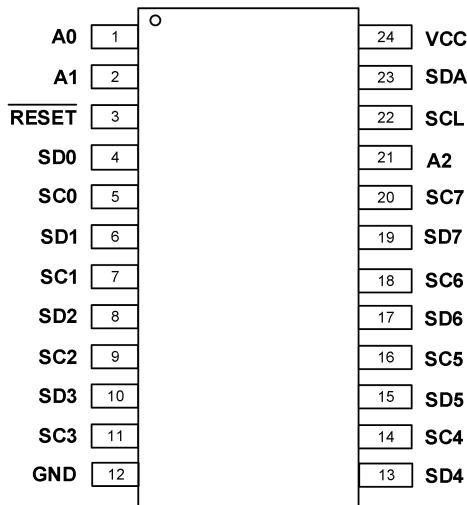

List of Figures

Figure 1. SDA output low voltage vs. Load current	8
Figure 2. Standby current vs. Supply voltage	8
Figure 3. On-resistance vs. Supply voltage	8
Figure 4. Pass-gate voltage vs. Supply voltage	8
Figure 5. I ² C load circuit and voltage waveforms	9
Figure 6. Reset load circuit and voltage waveforms	10
Figure 7. Definition of start and stop conditions	13
Figure 8. Bit transfer	14
Figure 9. DIO74548 address	14
Figure 10. Control resistor	15
Figure 11. Typical application schematic	17
Figure 12. Maximum pull-up resistance ($R_{p(max)}$) vs. Bus capacitance (C_b)	18
Figure 13. Minimum pull-up resistance ($R_{p(min)}$) vs. Pull-up reference voltage (V_{DPUX})	18
Figure 14. Power-on reset waveform	19
Figure 15. Glitch width and glitch height	20
Figure 16. V_{POR}	20

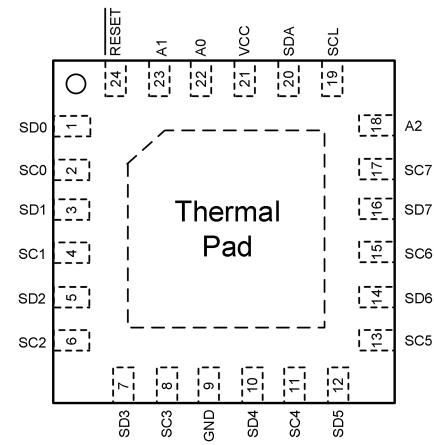

List of Tables

Table 1. Address reference	14
Table 2. Command byte definition	16
Table 3. Recommended supply sequencing and ramp rates ⁽¹⁾	19

1. Pin Assignment and Functions

TSSOP-24 (Top view)

QFN4*4-24 (Top view)

Pin No.		Pin Name	I/O	Description
TSSOP-24	QFN4*4-24			
1	22	A0	I	Address input 0. Connect directly to V _{CC} or ground
2	23	A1	I	Address input 1. Connect directly to V _{CC} or ground
21	18	A2	I	Address input 2. Connect directly to V _{CC} or ground
12	9	GND	-	Ground
3	24	RESET	I	Active-low reset input. Connect to V _{CC} or V _{DPU1} ⁽¹⁾ through a pull-up resistor, if not used.
4	1	SD0	I/O	Serial data 0. Connect to V _{DPU0} through a pull-up resistor
5	2	SC0	I/O	Serial clock 0. Connect to V _{DPU0} through a pull-up resistor
6	3	SD1	I/O	Serial data 1. Connect to V _{DPU1} through a pull-up resistor
7	4	SC1	I/O	Serial clock 1. Connect to V _{DPU1} through a pull-up resistor
8	5	SD2	I/O	Serial data 2. Connect to V _{DPU2} through a pull-up resistor
9	6	SC2	I/O	Serial clock 2. Connect to V _{DPU2} through a pull-up resistor
10	7	SD3	I/O	Serial data 3. Connect to V _{DPU3} through a pull-up resistor
11	8	SC3	I/O	Serial clock 3. Connect to V _{DPU3} through a pull-up resistor
13	10	SD4	I/O	Serial data 4. Connect to V _{DPU4} through a pull-up resistor
14	11	SC4	I/O	Serial clock 4. Connect to V _{DPU4} through a pull-up resistor
15	12	SD5	I/O	Serial data 5. Connect to V _{DPU5} through a pull-up resistor
16	13	SC5	I/O	Serial clock 5. Connect to V _{DPU5} through a pull-up resistor
17	14	SD6	I/O	Serial data 6. Connect to V _{DPU6} through a pull-up resistor

18	15		I/O	Serial clock 6. Connect to V_{DPU6} through a pull-up resistor
19	16		I/O	Serial data 7. Connect to V_{DPU7} through a pull-up resistor
20	17		I/O	Serial clock 7. Connect to V_{DPU7} through a pull-up resistor
22	19		I/O	Serial clock bus. Connect to V_{DPUM} through a pull-up resistor
23	20		I/O	Serial data bus. Connect to V_{DPUM} through a pull-up resistor
24	21		Power	Supply voltage

Note:

(1) V_{DPUX} is the pull-up reference voltage for the associated data line. V_{DPUM} is the master I²C reference voltage and $V_{DPU0} - V_{DPU7}$ are the slave channel reference voltages.

2. Absolute Maximum Ratings

Exceeding the maximum ratings listed under Absolute Maximum Ratings when designing is likely to damage the device permanently. Do not design to the maximum limits because long-time exposure to them might impact the device's reliability. The ratings are obtained over an operating free-air temperature range unless otherwise specified.

Symbol	Parameter	Min	Max	Unit
V_{CC}	Supply voltage	-0.5	7	V
V_{IN}	Input voltage	-0.5	7	V
I_{IN}	Input current	-20	20	mA
I_{OUT}	Output current	-25		mA
I_{CC}	Supply current	-100	100	mA
T_{STG}	Storage temperature	-65	150	°C
T_J	Max junction temperature	$V_{CC} \leq 3.6 \text{ V}$		130
		$V_{CC} \leq 5.5 \text{ V}$		90

3. Recommended Operating Conditions

Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. The ratings are obtained over an operating free-air temperature range unless otherwise specified.

Symbol	Parameter	Test conditions	Min	Max	Unit
V_{CC}	Supply voltage	$-40^\circ\text{C} \leq T_A \leq 85^\circ\text{C}$	1.65	5.5	V
		$85^\circ\text{C} < T_A \leq 125^\circ\text{C}$	1.65	3.6	
V_{IH}	High-level input voltage	SCL, SDA	$0.7 \times V_{CC}$	6	V
		A2-A0, RESET	$0.7 \times V_{CC}$	$V_{CC} + 0.5$	
V_{IL}	Low-level input voltage	SCL, SDA	-0.5	$0.3 \times V_{CC}$	V
		A2-A0, RESET	-0.5	$0.3 \times V_{CC}$	
T_A	Operating free-air temperature	$3.6 \text{ V} < V_{CC} \leq 5.5 \text{ V}$	-40	85	°C
		$1.65 \text{ V} \leq V_{CC} \leq 3.6 \text{ V}$	-40	125	

4. ESD Ratings

When a statically-charged person or object touches an electrostatic discharge sensitive device, the electrostatic charge might be drained through sensitive circuitry in the device. If the electrostatic discharge possesses sufficient energy, damage might occur to the device due to localized overheating.

Model	Condition	Value	Unit
ESD	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001	±8000	V
	Charged-device model (CDM), per JEDEC specification JS-002	±2000	

5. Thermal Considerations

The thermal resistance determines the heat insulation property of a material. The higher the thermal resistance is, the lower the heat loss. Accumulation of heat energy degrades the performance of semiconductor components.

Symbol	Metric	TSSOP-24	QFN4*4-24	Unit
$R_{\theta JA}$	Junction-to-ambient thermal resistance	109	57	°C/W
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	54	63	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	63	34	°C/W

6. Electrical Characteristics

The values are obtained under these conditions unless otherwise specified: $V_{CC} = 1.65$ V to 5.5 V, typical values are at nominal supply voltage, $T_A = 25^\circ\text{C}$.

Symbol	Parameter	Test Conditions	V_{CC}	Min	Typ	Max	Unit
V_{PORR}	Power-on reset voltage, V_{CC} rising	No load, $V_I = V_{CC}$ or GND ⁽¹⁾			1.3	1.55	V
V_{PORF}	Power-on reset voltage, V_{CC} falling ⁽²⁾	No load, $V_I = V_{CC}$ or GND ⁽¹⁾		0.85	1.1		V
V_{pass}	Switch output voltage	$V_{IN(sw)} = V_{CC}$, $I_{SWout} = -100$ μA	5 V		3.5		V
			4.5 V to 5.5 V	2.9		4	
			3.3 V		2		
			3 V to 3.6 V	1.6		2.5	
			2.5 V		1.4		
			2.3 V to 2.7 V	1.1		2	
			1.8 V		0.8		
			1.65 V to 1.95 V	0.5		1.2	
V_{OL}	SDA	$I_{OL} = 6$ mA	1.65 V to 5.5 V	0	0.06	0.4	V
I_{IN}	SCL, SDA	$V_{IN} = V_{CC}$ or GND ⁽¹⁾	1.65 V to 5.5 V	-1		1	μA
	SC7-SC0, SD7-SD0			-1		1	
	A2-A0			-1		1	
	RESET			-1		1	
I_{CC}	Operating mode	$V_{IN} = V_{CC}$ or GND ⁽¹⁾ , $I_{OUT} = 0$, $f_{SCL} = 400$ kHz	5.5 V		50		μA
			3.6 V		21		
			2.7 V		19		
			1.65 V		10		
		$V_I = V_{CC}$ or GND ⁽¹⁾ , $I_{OUT} = 0$, $f_{SCL} = 100$ kHz	5.5 V		4		
			3.6 V		2		
			2.7 V		1.5		
			1.65 V		1		
	Standby mode	$V_{IN} = \text{GND}^{(1)}$, $I_{OUT} = 0$, $-40^\circ\text{C} \leq T_A \leq 85^\circ\text{C}$, Low inputs	5.5 V		0.45	2	
			3.6 V		0.3	2	
			2.7 V		0.22	1	
			1.65 V		0.13	1	

		$-40^{\circ}\text{C} \leq T_{\text{A}} \leq 85^{\circ}\text{C}$, High inputs	3.6 V		0.3	2	
			2.7 V		0.22	1	
			1.65 V		0.13	1	
		$V_{\text{IN}} = V_{\text{CC}}$ or GND, $I_{\text{OUT}} = 0$, $85^{\circ}\text{C} < T_{\text{A}} \leq 125^{\circ}\text{C}$, Low and high inputs	3.6 V		0.54	2	
			2.7 V		0.45	1.5	
			1.65 V		0.31	1	
ΔI_{CC}	Supply-currentchange SCL, SDA	SCL or SDA input at 0.6 V, other inputs at V_{CC} or GND ⁽¹⁾	$1.65 \text{ V to } 5.5 \text{ V}$		3	20	μA
		SCL or SDA input at $V_{\text{CC}} - 0.6 \text{ V}$, other inputs at V_{CC} or GND			3	20	
C_{IN}	A2-A0	$V_{\text{IN}} = V_{\text{CC}}$ or GND ⁽¹⁾	$1.65 \text{ V to } 5.5 \text{ V}$		4		pF
	RESET				4		
	SCL	$V_{\text{IN}} = V_{\text{CC}}$ or GND ⁽¹⁾ , switch off			20		
$C_{\text{IO(OFF)}}^{(3)}$	SDA	$V_{\text{IN}} = V_{\text{CC}}$ or GND ⁽¹⁾ , switch off	$1.65 \text{ V to } 5.5 \text{ V}$		20		pF
	SC7-SC0, SD7-SD0				5.5		
R_{ON}	Switch-on resistance	$V_{\text{OUT}} = 0.4 \text{ V}$, $I_{\text{OUT}} = 15 \text{ mA}$	4.5 V to 5.5 V	2.5	4.5	7	Ω
			3 V to 3.6 V	3	6	10	
		$V_{\text{OUT}} = 0.4 \text{ V}$, $I_{\text{OUT}} = 10 \text{ mA}$	2.3 V to 2.7 V	4	8	12	
			1.65 V to 1.95 V	6.5	16	25	

Note:

- (1) $\overline{\text{RESET}} = V_{\text{CC}}$ (held high) when all other input voltages, $V_{\text{IN}} = \text{GND}$.
- (2) The power-on reset circuit resets the I²C bus logic with $V_{\text{CC}} < V_{\text{PORF}}$.
- (3) $C_{\text{IO(ON)}}$ depends on internal capacitance and external capacitance added to the SCn lines when channel(s) are ON.
- (4) Specifications subject to change without notice.

7. Reset Timing Requirements

Over recommended operating free-air temperature range (unless otherwise noted).

Symbol	Parameter		Min	Typ	Max	Unit
$t_{W(L)}^{(1)}$	Pulse duration, $\overline{\text{RESET}}$ low	$V_{\text{CC}} \geq 2.5 \text{ V}$	18			ns
		$1.65 \text{ V} \leq V_{\text{CC}} < 2.5 \text{ V}$	28			
$t_{\text{REC(STA)}}^{(1)}$	Recovery time from $\overline{\text{RESET}}$ to start		0			

Note:

- (1) Guaranteed by design.
- (2) Specifications subject to change without notice

8. Switching Characteristics

Over recommended operating free-air temperature range, $C_L \leq 100 \text{ pF}$, unless otherwise noted .

Symbol	Parameter		From (input)	To (output)	Min	Typ	Max	Unit
$t_{pd}^{(1)}$	Propagation delay time	$R_{ON} = 16 \Omega, C_L = 15 \text{ pF}$	SDA or SCL	SDn or SCn		0.24		ns
		$R_{ON} = 16 \Omega, C_L = 50 \text{ pF}$				0.8		
$t_{rst}^{(2)(3)}$	$\overline{\text{RESET}}$ time (SDA clear)		$\overline{\text{RESET}}$	SDA			500	ns

Note:

- (1) The propagation delay is the calculated RC time constant of the typical switch on-state resistance and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).
- (2) t_{rst} is the propagation delay measured from the time the $\overline{\text{RESET}}$ pin is first asserted low to the time the SDA pin is asserted high, signaling a stop condition. It must be a minimum of $t_{W(L)}$.
- (3) Guaranteed by design.
- (4) Specifications subject to change without notice.

9. Typical Performance Characteristics

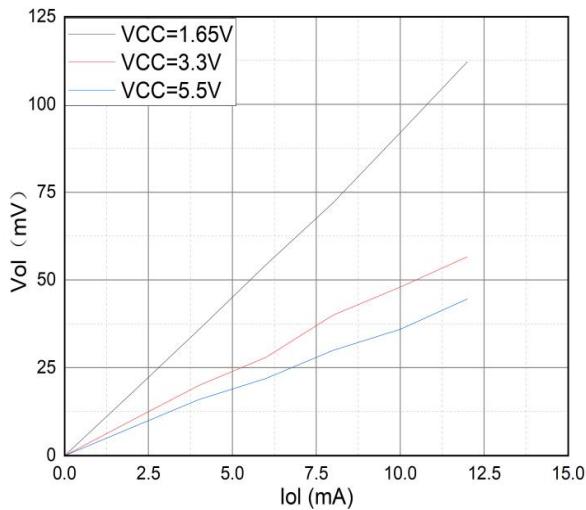


Figure 1. SDA output low voltage vs. Load current

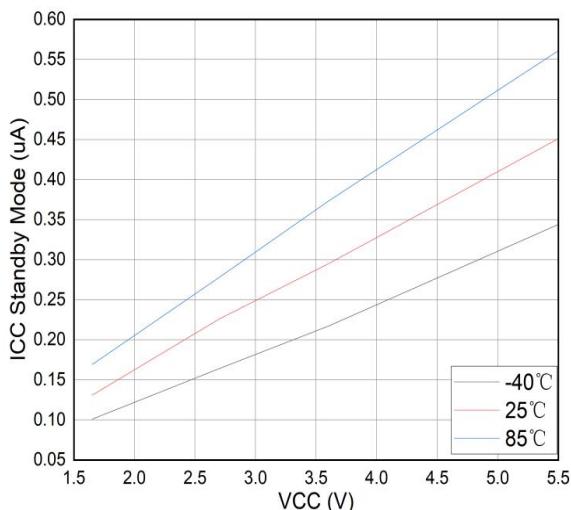


Figure 2. Standby current vs. Supply voltage

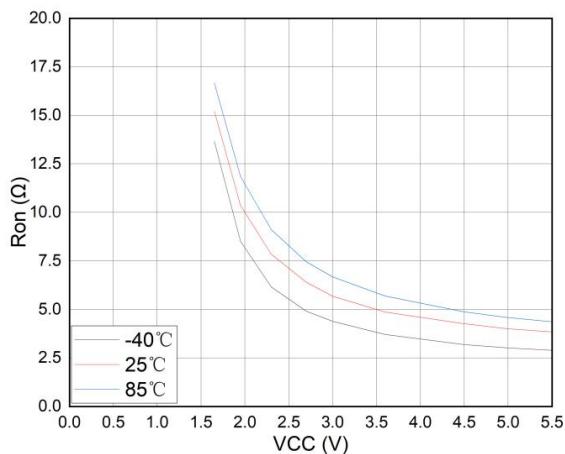


Figure 3. On-resistance vs. Supply voltage

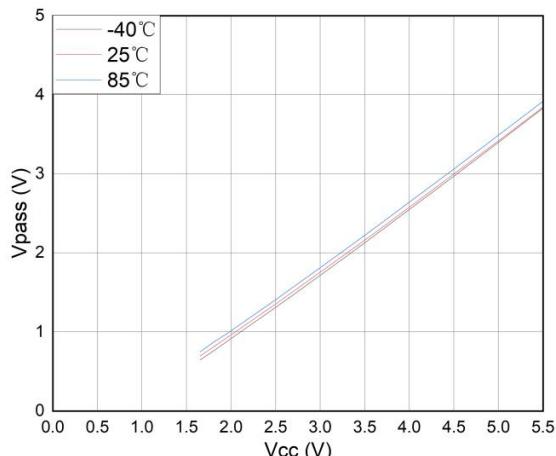
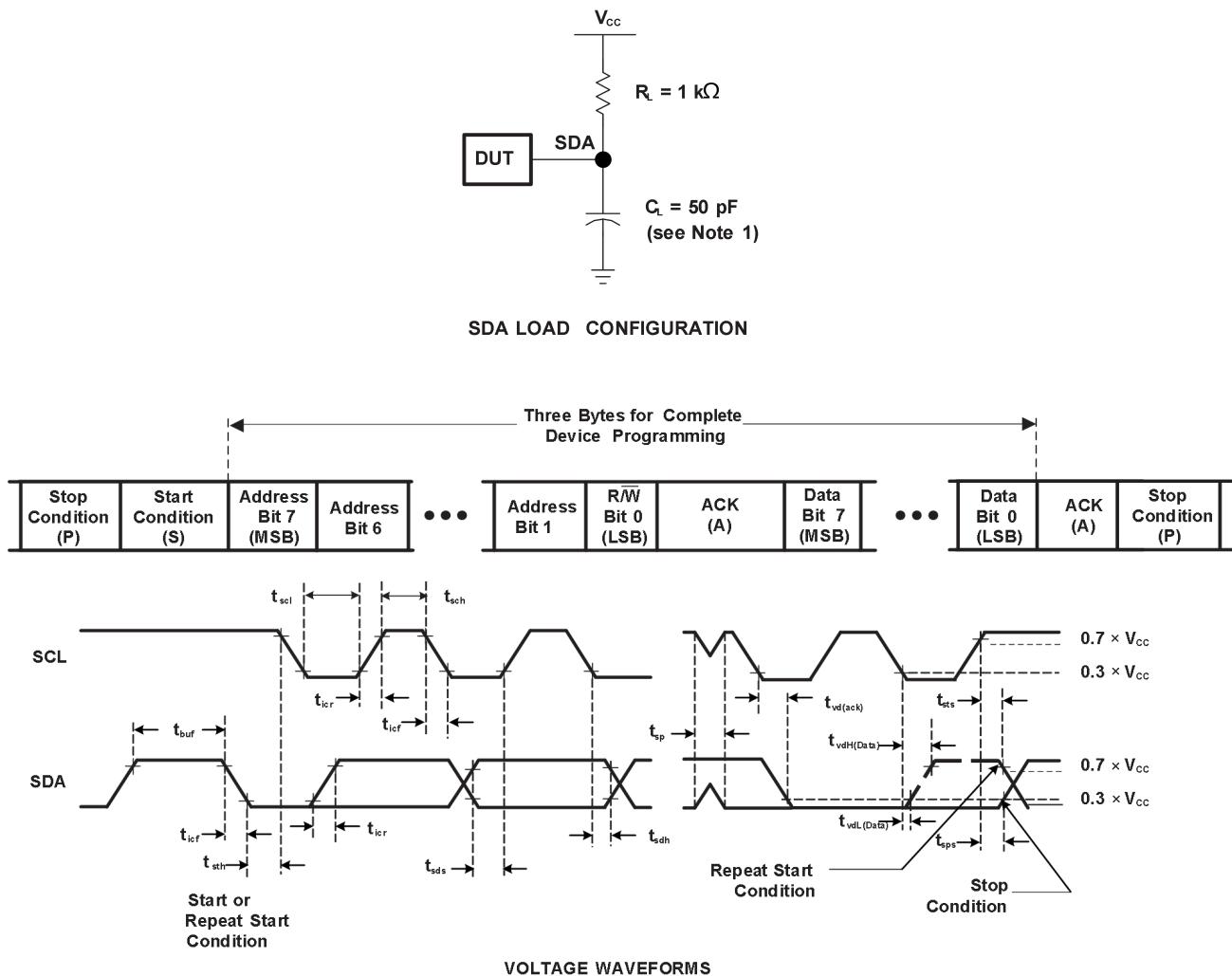
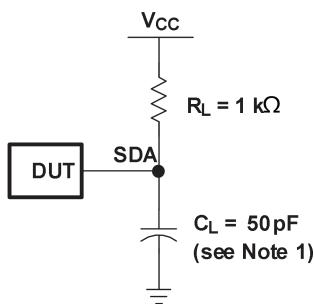
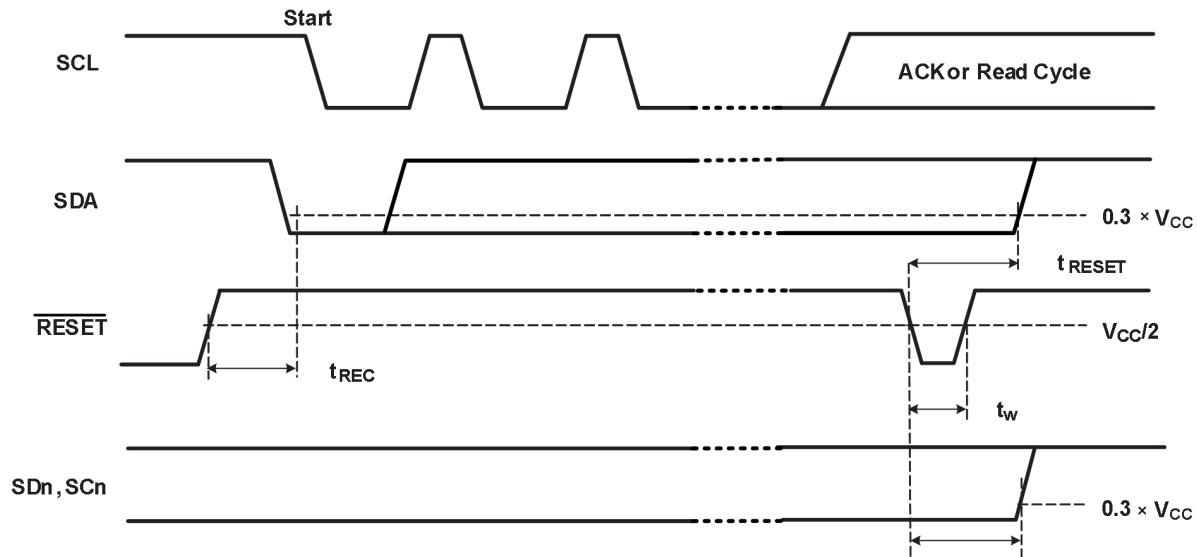



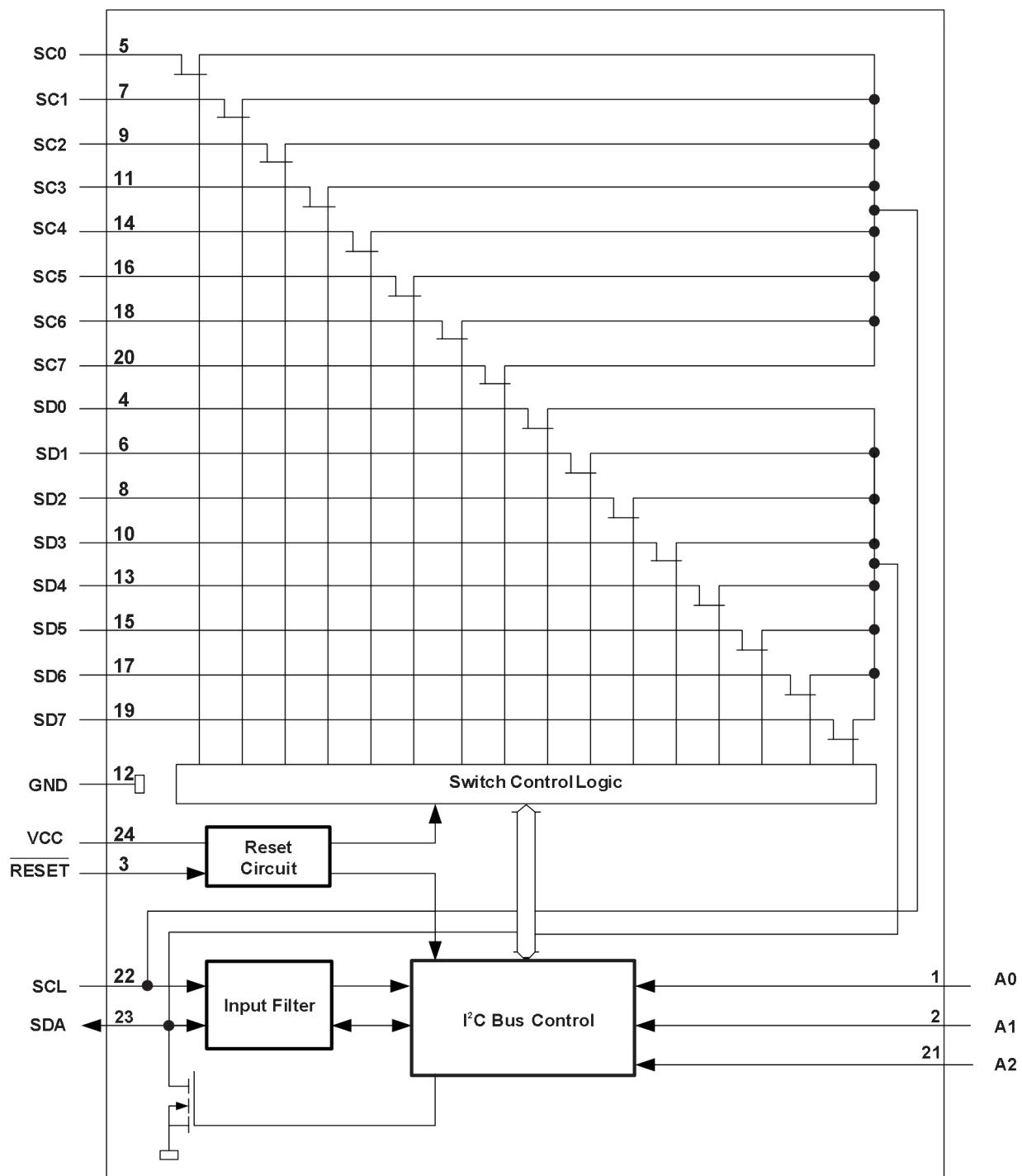
Figure 4. Pass-gate voltage vs. Supply voltage


10. Parameter Measurement Information


Note:

- (1) C_L includes probe and jig capacitance.
- (2) All inputs are supplied by generators having the following characteristics: PRR $\leq 10 \text{ MHz}$, $Z_O = 50 \Omega$, $t_r/t_f \leq 30 \text{ ns}$.
- (3) Not all parameters and waveforms are applicable to all devices.

Figure 5. I²C load circuit and voltage waveforms


SDA LOAD CONFIGURATION

Note:

- (1) C_L includes probe and jig capacitance.
- (2) All inputs are supplied by generators having the following characteristics: PRR $\leq 10\text{ MHz}$, $Z_O = 50\Omega$, $t_r/t_f \leq 30\text{ ns}$.
- (3) I/Os are configured as inputs.
- (4) Not all parameters and waveforms are applicable to all devices.

Figure 6. Reset load circuit and voltage waveforms

11. Block Diagram

Note:

(1) Pin numbers are for the TSSOP-24 package.

12. Function Description

The DIO74548 is an 8-channel, bidirectional translating switch that can be controlled through the I²C bus. The SCL/SDA upstream signal pair fans out to eight downstream pairs, or channels. The contents of the programmable control register determine the pair or pairs of SCn/SDn to be selected. The downstream channels resolve the I²C slave address conflicts.

Either asserting the **RESET** pin low or cycling the power supply, which is called power-on reset (PoR) resets the state machine of the device and deselect all channels if one of the downstream I²C buses get stuck in a low state.

The I²C master device that is switched to communicate with several I²C slaves controls the connections of the I²C data path. A single 8-bit control register is written to or read from to determine the selected channels after the successful acknowledgment of the slave address which can be controlled by using a hardware to select A0, A1, and A2 pins.

The voltage conversion feature enables parts of 1.8 V, 2.5 V, or 3.3 V to communicate with 5 V parts without any additional protection by using external pull-up resistors to pull the bus to the desired voltage level for each channel. All I/O pins have a 5 V tolerance.

12.1. Device functional modes

12.1.1. **RESET** input

The **RESET** input is an active-low signal. If a bus-fault condition occurs, reset the register and I²C state machine and deselect all channels by asserting the signal low for at least a pulse duration. Connect the pin to VCC by using a pull-up resistor.

12.1.2. Power-on reset

A power-on reset results from cycling power to the device. When V_{CC} reaches V_{PORR}, the device enters reset condition in which the registers and I²C state machines are initialized and all channels are deselected. Thereafter, lower V_{CC} below V_{PORF} to reset the device.

12.2. Programming

12.2.1. I²C interface

The I²C bus is for two-way two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). The device that controls the message is the master and the devices that are controlled by the master device are the slaves. The standard bidirectional I²C interface in the device enables configuring and reading the status of the DIO74548 by a master device. Each slave on the I²C bus has a specific device address to differentiate it from other slave devices on the same I²C bus.

The bus is idle when both SDA and SCL lines are high after a STOP condition (see Figure 7 and Figure 8). Data transfer might be initiated when the bus is idle.

This is how a master access a slave device:

- If a master wants to send data to a slave:
 1. Master-transmitter sends a START condition and addresses the slave-receiver.
 2. Master-transmitter sends data to slave-receiver.
 3. Master-transmitter terminates the transfer by sending a STOP condition.
- If a master wants to receive or read data from a slave:
 1. Master-receiver sends a START condition and addresses the slave-transmitter.
 2. Master-receiver sends the requested register to read to slave-transmitter.
 3. Master-receiver receives data from the slave-transmitter.

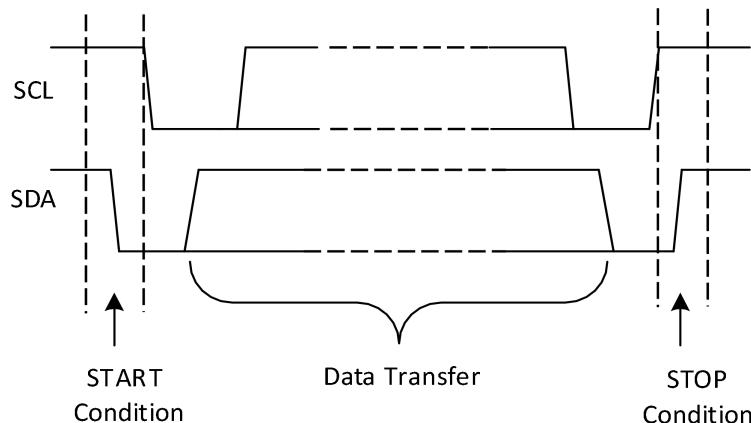


Figure 7. Definition of start and stop conditions

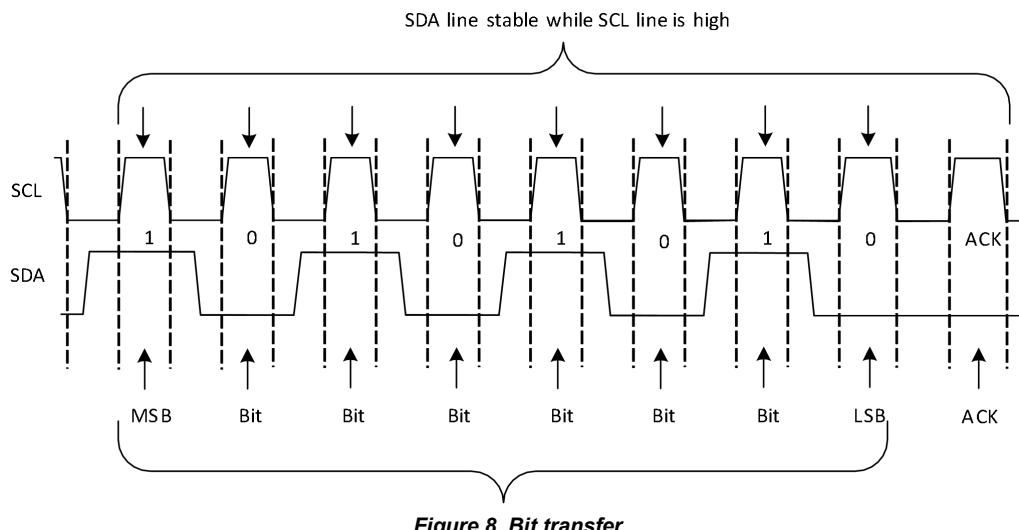


Figure 8. Bit transfer

12.2.2. Device address

Figure 9 shows the address byte of the DIO74548.

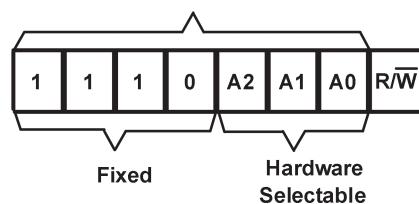


Figure 9. DIO74548 address

The last bit of the slave address defines the operation to be read or write. When the last bit is 1 or high, it means to read; when the last bit is 0 or low, it means to write. Table 1 shows the slave address reference.

Table 1. Address reference

Inputs			I ² C Bus Slave Address
A2	A1	A0	
L	L	L	112 (decimal), 70 (hexadecimal)
L	L	H	113 (decimal), 71 (hexadecimal)
L	H	L	114 (decimal), 72 (hexadecimal)
L	H	H	115 (decimal), 73 (hexadecimal)
H	L	L	116 (decimal), 74 (hexadecimal)
H	L	H	117 (decimal), 75 (hexadecimal)
H	H	L	118 (decimal), 76 (hexadecimal)
H	H	H	119 (decimal), 77 (hexadecimal)

12.2.3. Bus transactions

The DIO74548 has only one register in the device, which is why it can be written to directly by sending the register data immediately after the slave address, skipping the register number.

To write to a slave, the master sends a START condition on the bus, followed by the address of the slave and the last bit set to 0. After the slave acknowledges, the master sends the control register data to the slave and terminates the transmission with a STOP condition. The amount of bytes sent has no limit, but the register only save the last byte. Figure 10 is an example of writing a single byte to a slave register.

12.2.4. Control register

After the slave acknowledges, the bus master sends a command byte that is stored in the control register in the DIO74548. The I²C bus can write to or read from the control register. Each bit in the command byte corresponds to a SCn/SDn channel. A high or 1 selects the channel. Select more than one channel at the same time is possible. The selected channel only becomes active after a stop condition is placed on the I²C bus. The condition ensures that all SCn/SDn lines are in a high state when the channel is active, avoiding false conditions at the time of connection. A stop condition must follows immediately after the acknowledge cycle. The device only saves the last byte received if multiple bytes are sent to the device.

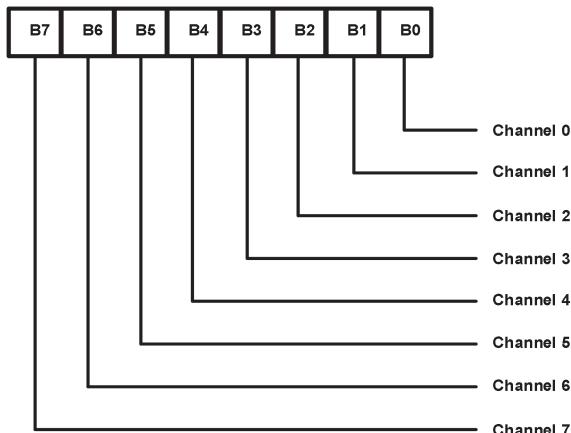


Figure 10. Control resistor

Table 2 shows the DIO74548 command byte definition.

Table 2. Command byte definition

Control Register Bits								Command
B7	B6	B5	B4	B3	B2	B1	B0	
X	X	X	X	X	X	X	0	Channel 0 disabled
							1	Channel 0 enabled
X	X	X	X	X	X	0	X	Channel 1 disabled
						1		Channel 1 enabled
X	X	X	X	X	0	X	X	Channel 2 disabled
					1			Channel 2 enabled
X	X	X	X	0	X	X	X	Channel 3 disabled
				1				Channel 3 enabled
X	X	X	0	X	X	X	X	Channel 4 disabled
			1					Channel 4 enabled
X	X	0	X	X	X	X	X	Channel 5 disabled
		1						Channel 5 enabled
X	0	X	X	X	X	X	X	Channel 6 disabled
	1							Channel 6 enabled
0	X	X	X	X	X	X	X	Channel 7 disabled
1								Channel 7 enabled
0	0	0	0	0	0	0	0	No channel selected, power-up/reset/default state

13. Application Information

Important notice: Validation and testing are the most reliable ways to confirm system functionality.

The application information is not part of the specification and is for reference purposes only.

Applications of the DIO74548 include an I²C or SMBus master device and eight I²C slave devices. In an application where I²C slave address conflicts happen, the downstream channels can resolve the conflicts. In an application where no I²C slave address conflicts happen, connect the slave devices to any desired channel to distribute the total bus capacitance of multiple channels.

13.1. Typical application

Figure 11 shows an application of DIO74548.

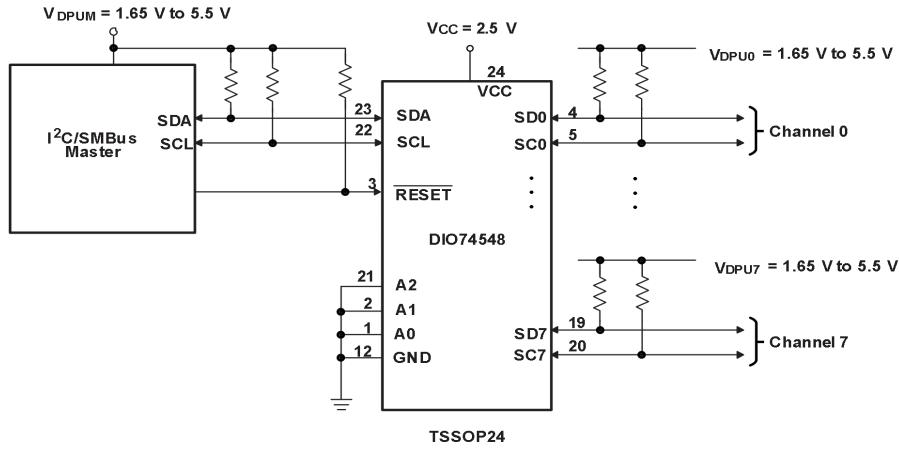


Figure 11. Typical application schematic

13.2. Design requirements

The device typically has one or more data pull-up voltages (V_{DPUX}), one for the master device (V_{DPUM}) and one for each selectable slave channel ($V_{DPU0} - V_{DPU7}$). V_{DPUM} and V_{DPUX} are at the same value of the supply voltage when the master device and all slave devices operate at the same voltage.

To control the slave address of the DIO74548, use hardware to select A0, A1, and A2 pins which might be tied directly to GND or VCC.

The total I_{OL} from SCL/SDA to GND on the master side is the sum of the currents through all pull-up resistors when multiple slave channels are activated simultaneously in the application.

The device can use power supply voltage to limit the maximum voltage that is passed from one I²C bus to another due to the pass-gate construction.

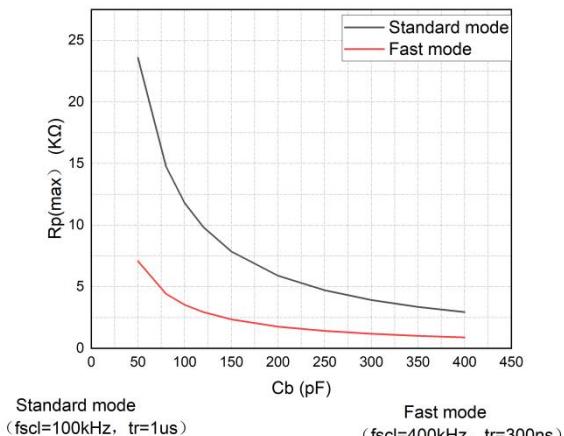
13.3. Detailed design procedure

Following the assignment of slaves to appropriate slave channels and identification of bus voltages, select the appropriate pull-up resistors for each bus. The minimum pull-up resistance can be calculated from Equation (1).

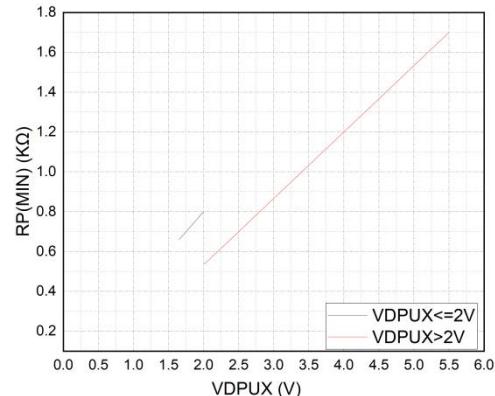
$$R_{PULL-UP(MIN)} = \frac{V_{DPUX} - V_{OL(MAX)}}{I_{OL}} \quad (1)$$

The maximum pull-up resistance can be calculated from Equation (2).

$$R_{PULL-UP(MAX)} = \frac{t_r}{0.8473 \times C_b} \quad (2)$$


where

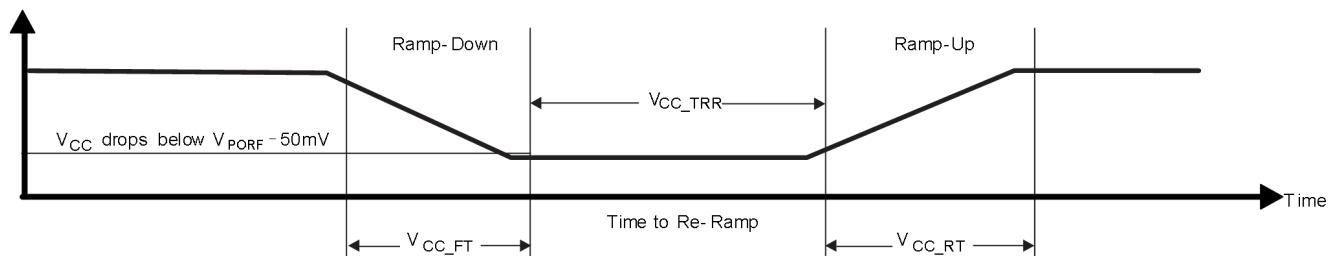
t_r is the maximum rise time (300 ns for fast-mode operation, $f_{SCL} = 400$ kHz).


C_b is the bus capacitance.

Limit the maximum bus capacitance for an I²C bus at or under 400 pF for fast-mode operation. The bus capacitance is almost the capacitance sum of the DIO74548, wires, connections and trances, and each individual slave on a given channel. Each of the slaves on all channels contributes to the total bus capacitance when multiple channels are active at the same time.

13.4. Application curves

Figure 12. Maximum pull-up resistance ($R_{p(max)}$) vs. Bus capacitance (C_b)


Figure 13. Minimum pull-up resistance ($R_{p(min)}$) vs. Pull-up reference voltage (V_{DPUX})

$V_{OL} = 0.2 \times V_{DPUX}$, $I_{OL} = 2$ mA when $V_{DPUX} \leq 2$ V
 $V_{OL} = 0.4$ V, $I_{OL} = 3$ mA when $V_{DPUX} > 2$ V

14. Power Supply Recommendations

For a successful initialization of the I²C bus logic, the power-on reset requirements must be followed when the device is powered on for the first time or whenever the device requires a power supply cycle.

The power-on reset feature can reset the DIO74548 to default conditions when a glitch or data corruption happens. The feature also is used when the device is powered on for the first time in an application. To perform the reset, cycle the power of the device as shown in Figure 14.

Figure 14. Power-on reset waveform

Table 3 specifies the performance of the power-on reset for DIO74548 for both types of power-on reset.

Table 3. Recommended supply sequencing and ramp rates⁽¹⁾

Symbol	Parameter	Min	Max	Unit
$V_{CC_FT}^{(2)}$	Fall time	1	100	ms
$V_{CC_RT}^{(2)}$	Rise time	0.1	100	ms
$V_{CC_TRR}^{(2)}$	Time to re-ramp (when V_{CC} drops below $V_{PORF(\min)} - 50$ mV or when V_{CC} drops to GND)	40		μs
$V_{CC_GH}^{(3)}$	Level that V_{CC} can glitch down to, but not cause a functional disruption when $V_{CC_GW} = 1$ μs		1.2	V
$V_{CC_GW}^{(3)}$	Glitch width that does not cause a functional disruption when $V_{CC_GH} = 0.5 \times V_{CC}$		10	μs

Note:

(1) All supply sequencing and ramp rate values are measured at $T_A = 25^\circ\text{C}$

(2) See Figure 12

(3) See Figure 13

Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width (V_{CC_GW}) and height (V_{CC_GH}) are interdependent. The bypass capacitance, source impedance, and device impedance are factors that affect power-on reset performance. Figure 13 and Table 3 provide the information on how to measure these specifications.

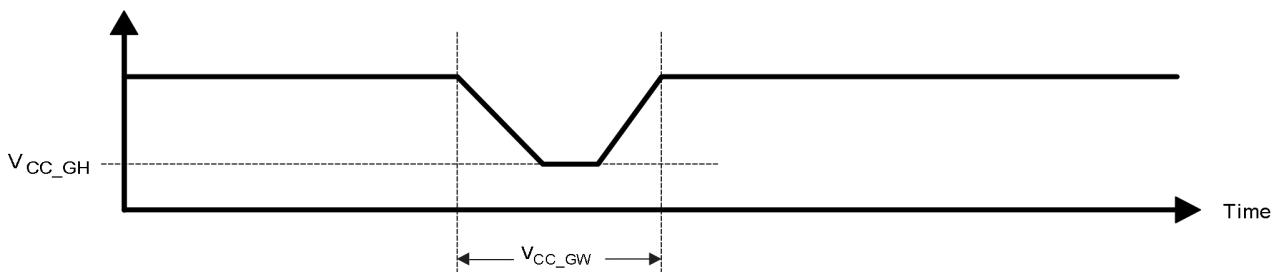


Figure 15. Glitch width and glitch height

As soon as the V_{POR} voltage level is reached, the reset condition is released and all registers and the state machine are reset to their default states. The value of V_{POR} differs based on the V_{CC} being lowered to or from 0. Refer to Figure 14 and Table 3 for more information on this specification.

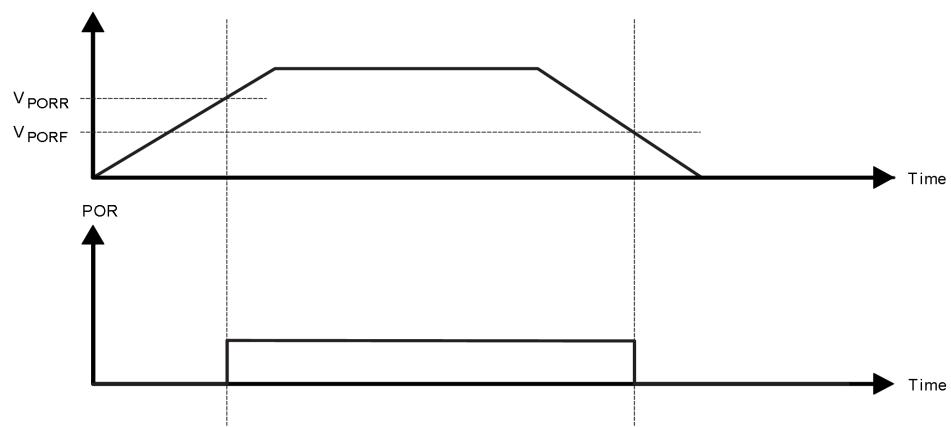
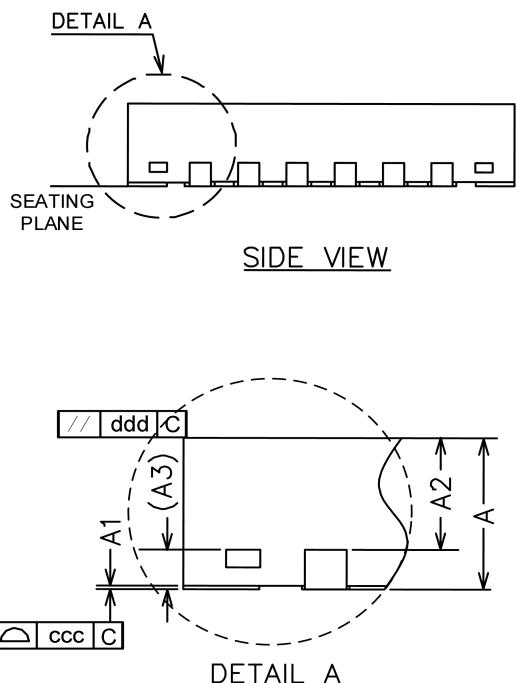
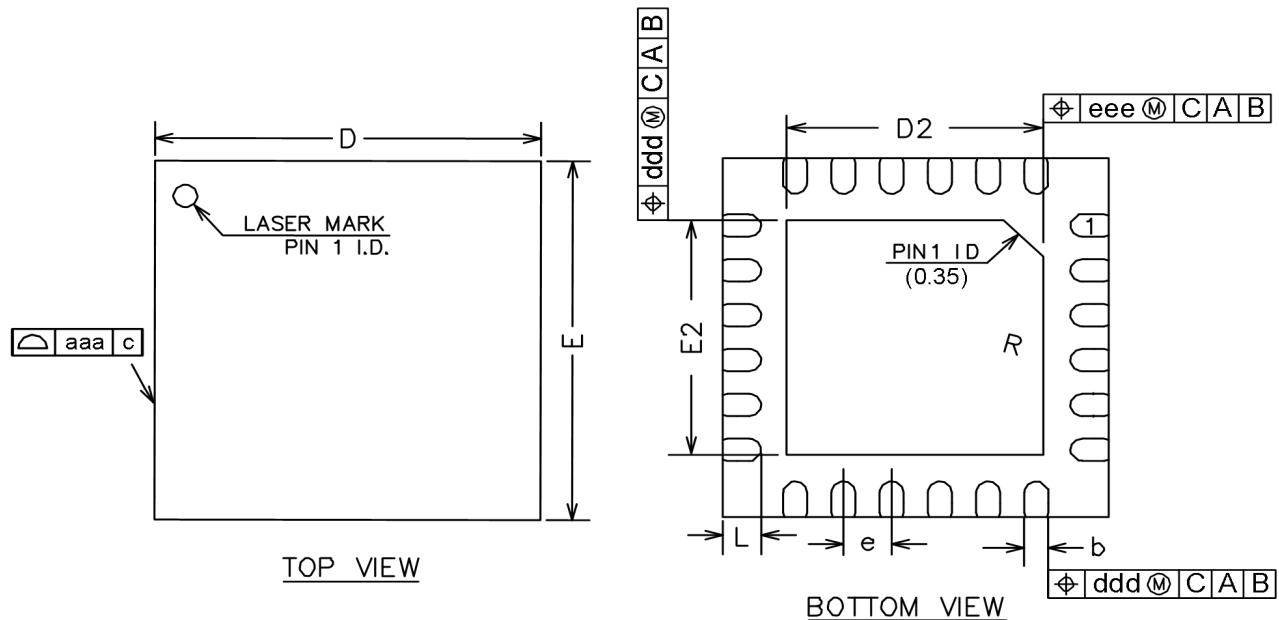


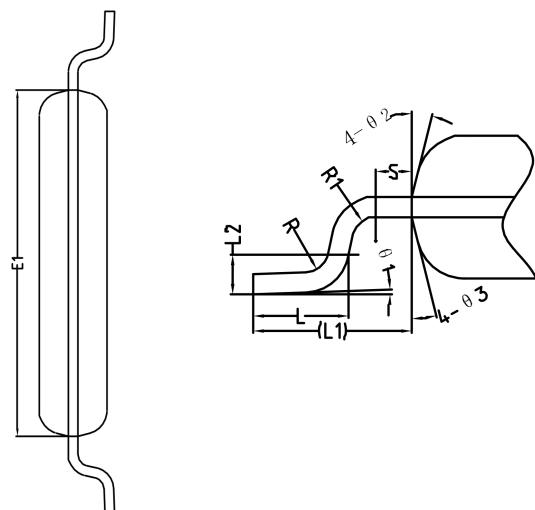
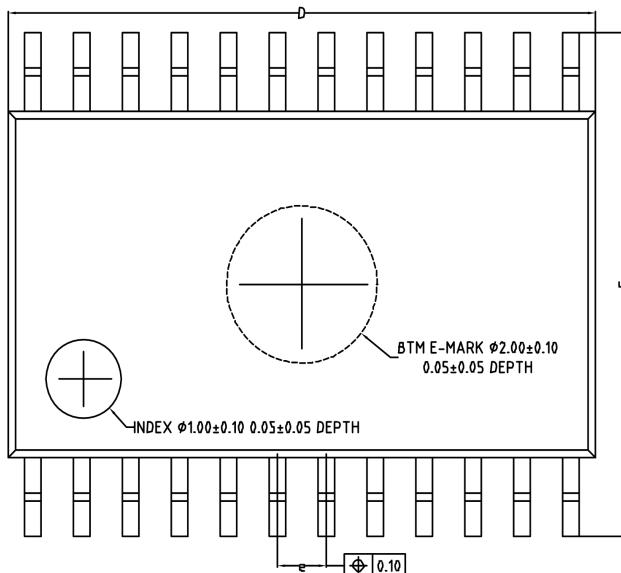
Figure 16. V_{POR}

15. Layout Guidelines

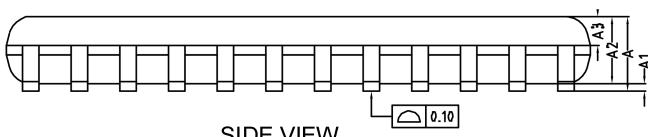


PCB layout concerns such as matched impedances and differential pairs are related to high-speed data transfer but not to I²C signal speeds. Pins that are connected to the ground must have a low-impedance path to the ground plane in the form of wide polygon pours and multiple vias on an inner layer of the board. Use by-pass and decoupling capacitors to control the voltage on the VCC pin. Use larger capacitors to provide additional power when a short power supply glitch happens. Use a smaller capacitor to filter out high-frequency ripple.

When voltage translation is not necessary, all V_{DPUX} voltages and VCC could be at the same potential, and all pull-up resistors could be connected to the appropriate reference voltage by a single copper plane. When voltage translation is necessary, V_{DPUM} and $V_{DPU0} - V_{DPU7}$ might all be on the same layer of the board with split planes to isolate different voltage potentials.

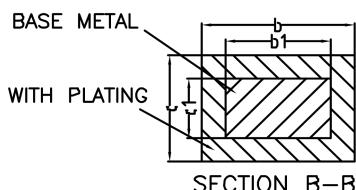
To reduce the total I²C bus capacitance added by PCB parasitics, keep SCn and SDn as short as possible. Minimize the widths of the traces.



16. Physical Dimensions

16.1. QFN4*4-24



Common Dimensions (Units of Measure = Millimeter)			
Symbol	Min	Nom	Max
A	0.70	0.75	0.80
A1	0	0.02	0.05
A2	-	0.55	-
A3	0.203 REF		
b	0.20	0.25	0.30
D	3.90	4.00	4.10
E	3.90	4.00	4.10
D2	2.60	2.70	2.80
E2	2.60	2.70	2.80
e	0.50 REF		
L	0.30	0.40	0.45
aaa	0.10		
bbb	0.10		
ccc	0.08		
ddd	0.10		
eee	0.10		


16.2. TSSOP-24

TOP VIEW

SIDE VIEW

Common Dimensions
(Units of Measure = Millimeter)

Symbol	Min	Nom	Max
A	-	-	1.20
A1	0.05	-	0.15
A2	0.80	0.90	1.00
A3	0.34	0.39	0.44
b	0.20	-	0.29
b1	0.19	0.22	0.25
c	0.10	-	0.19
c1	0.10	0.13	0.15
D	7.70	7.80	7.90
E	6.20	6.40	6.60
E1	4.30	4.40	4.50
e	0.55	0.65	0.75
L	0.45	0.60	0.75
L1	1.00 REF		
L2	0.25 BSC		
R	0.09	-	-
R1	0.09	-	-
S	0.20	-	-
θ1	0°	-	8°
θ2	12°	14°	16°
θ3	12°	14°	16°

Disclaimer

This specification and information contained herein are provided on an “AS IS” basis and **WITH ALL FAULTS**. All product specifications, statements, information, and data (collectively, the “Information”) in this datasheet or made available on the website of www.dioo.com are subject to change without notice. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to his/her application. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, express or implied.