

DIO7970

3.6 V, 4 A, 4.9 mΩ On-Resistance Load Switch

Features

- Input voltage range from 0.65 V to 3.6 V
- Maximum continuous switch current (I_{MAX}): 4 A
- Quiescent current: 26 μ A (typ.) at $V_{IN} > 1.2$ V
- Shutdown current: 1 μ A (typ.) at $V_{IN} > 1.8$ V
- Controlled slew rate to avoid inrush current
 - Turn-on time: 2600 μ s at 3.6 V
 - Turn-on time: 1900 μ s at 0.65 V
- On-resistance
 - $R_{ON} = 4.9$ mΩ (typ.) at $V_{IN} \geq 1.8$ V
 - $R_{ON} = 8.7$ mΩ (typ.) at $V_{IN} = 0.65$ V
- Low threshold enable (EN) supports logic as low as 0.9 V (V_{IH})
- Thermal shutdown
- Quick output discharge (R_{DIS}): 150 Ω (typ.)
- Package: WLCSP-8

Applications

- Notebook computers
- Table computers
- Industrial PCs
- Smart phones
- Storage instrument

Typical Application

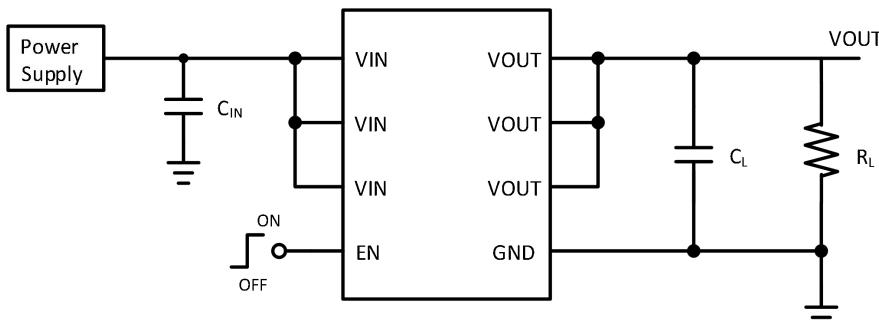


Figure 1. Typical Application

Ordering Information

Ordering Part No.	Top Marking	MSL	RoHS	T _A	Package	
DIO7970WL8	GJ7V	1	Green	-40 to 105°C	WLCSP-8	Tape & Reel, 5000

Pin Assignments

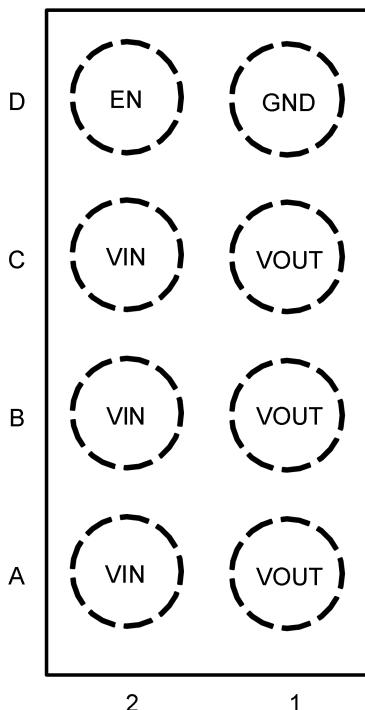


Figure 2. Pin assignment (Top view)

Pin Definitions

Pin Name	NO.	Description
GND	D1	Ground.
EN	D2	Switch control input. Do not leave the pin floating.
VIN	A2/B2/C2	Switch input.
VOUT	A1/B1/C1	Switch output.

Absolute Maximum Ratings

Stresses beyond those listed under the Absolute Maximum Rating table may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DIOO does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating	Unit
V_{IN}	Input voltage	-0.3 to 4	V
V_{OUT}	Output voltage	-0.3 to 4	V
V_{EN}	EN voltage	-0.3 to 4	V
I_{MAX}	Maximum continuous switch current	≤ 4	A
I_{PLS}	Maximum pulsed switch current, pulse $< 300 \mu s$, 2% duty cycle	≤ 6	A
T_J	Maximum junction temperature	Internally limited	
T_{STG}	Storage temperature	-65 to 150	°C
ESD	Human-body model (HBM) per ESDA/JEDEC JS-001	± 2000	V
	Charged-device model (CDM) per ESDA/JEDEC JS -002	± 2000	V
$R_{\theta JA}$	Junction-to-ambient thermal resistance	130	°C/W
$R_{\theta JC}$	Junction-to-case thermal resistance	54	°C/W

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications.

Symbol	Parameter	Rating	Unit
V_{IN}	Input voltage	0.65 to 3.6	V
V_{EN}	EN voltage	0 to 3.6	V
V_{OUT}	Output voltage	$\leq V_{IN}$	V
T_J	Operating temperature	-40 to 125	°C
T_A	Operating free-air temperature	-40 to 105	°C

Note:

(1) Over operating free-air temperature range, unless otherwise noted.

Electrical Characteristics

V_{IN} = 0.65 V to 3.6 V, unless otherwise noted.

Symbol	Parameter	Test Conditions		Min	Typ	Max	Unit
V_{IH}	High-level input voltage, EN		–40°C to 105°C	0.9			V
V_{IL}	Low-level input voltage, EN		–40°C to 105°C			0.45	V
I_Q	Quiescent current	V_{OUT} = Open, Switch enabled, $V_{IN} > 1.2$ V	–40°C to 85°C		26	65	μA
			–40°C to 105°C			75	μA
		V_{OUT} = Open, Switch enabled, $V_{IN} \leq 1.2$ V	–40°C to 85°C		16	50	μA
			–40°C to 105°C			55	μA
I_{SD}	Shutdown current	V_{OUT} = GND, Switch disabled, $V_{IN} > 1.8$ V	–40°C to 85°C		1.0	15	μA
			–40°C to 105°C			36	μA
		V_{OUT} = GND, Switch disabled, $V_{IN} \leq 1.8$ V	–40°C to 85°C		0.9	7	μA
			–40°C to 105°C			17	μA
R_{ON}	ON-resistance	$I_{OUT} = -200$ mA $V_{IN} \geq 1.8$ V	25°C		4.9	8	mΩ
			–40°C to 85°C			9.5	mΩ
			–40°C to 105°C			11.5	mΩ
		$I_{OUT} = -200$ mA $V_{IN} = 1.2$ V	25°C		5.7	9.9	mΩ
			–40°C to 85°C			10.9	mΩ
			–40°C to 105°C			12.9	mΩ
		$I_{OUT} = -200$ mA $V_{IN} = 0.65$ V	25°C		8.7	13.5	mΩ
			–40°C to 85°C			14.5	mΩ
			–40°C to 105°C			16.5	mΩ
R_{PD}	Output pull down	$I_{OUT} = 3$ mA, Switch disabled, $V_{IN} = 3.6$ V	–40°C to 105°C		150		Ω
		$I_{OUT} = 3$ mA, Switch disabled, $V_{IN} = 0.65$ V	–40°C to 105°C		3		kΩ
I_{EN}	EN input leakage	$V_{EN} = 0$ V to 3.6 V	–40°C to 105°C			0.1	μA
T_{SD}	Thermal shutdown	T_J rising			165		°C
$T_{SD,HYS}$	Thermal shutdown hysteresis	T_J falling			25		°C

Note:

(1) Specifications subject to change without notice.

Switching Characteristics

$V_{EN} = 3.6 \text{ V}$, $T_A = 25^\circ\text{C}$, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$V_{IN} = 3.6 \text{ V}$						
t_{ON}	Turn-on time	$C_L = 0.1 \mu\text{F}$, $R_L = 10 \Omega$		2600		μs
t_{OFF}	Turn-off time	$C_L = 0.1 \mu\text{F}$, $R_L = 10 \Omega$		2.4		
t_R	V_{OUT} rise time	$C_L = 0.1 \mu\text{F}$, $R_L = 10 \Omega$		1700		
t_F	V_{OUT} fall time	$C_L = 0.1 \mu\text{F}$, $R_L = 10 \Omega$		2.5		
t_D	EN delay time	$C_L = 0.1 \mu\text{F}$, $R_L = 10 \Omega$		900		
$V_{IN} = 1.8 \text{ V}$						
t_{ON}	Turn-on time	$C_L = 0.1 \mu\text{F}$, $R_L = 10 \Omega$		2000		μs
t_{OFF}	Turn-off time	$C_L = 0.1 \mu\text{F}$, $R_L = 10 \Omega$		3		
t_R	V_{OUT} rise time	$C_L = 0.1 \mu\text{F}$, $R_L = 10 \Omega$		1100		
t_F	V_{OUT} fall time	$C_L = 0.1 \mu\text{F}$, $R_L = 10 \Omega$		2.5		
t_D	EN delay time	$C_L = 0.1 \mu\text{F}$, $R_L = 10 \Omega$		900		
$V_{IN} = 0.65 \text{ V}$						
t_{ON}	Turn-on time	$C_L = 0.1 \mu\text{F}$, $R_L = 10 \Omega$		1900		μs
t_{OFF}	Turn-off time	$C_L = 0.1 \mu\text{F}$, $R_L = 10 \Omega$		25		
t_R	V_{OUT} rise Time	$C_L = 0.1 \mu\text{F}$, $R_L = 10 \Omega$		800		
t_F	V_{OUT} fall time	$C_L = 0.1 \mu\text{F}$, $R_L = 10 \Omega$		8		
t_D	EN delay time	$C_L = 0.1 \mu\text{F}$, $R_L = 10 \Omega$		1100		

Note:

(1) Specifications subject to change without notice.

Typical Performance Application

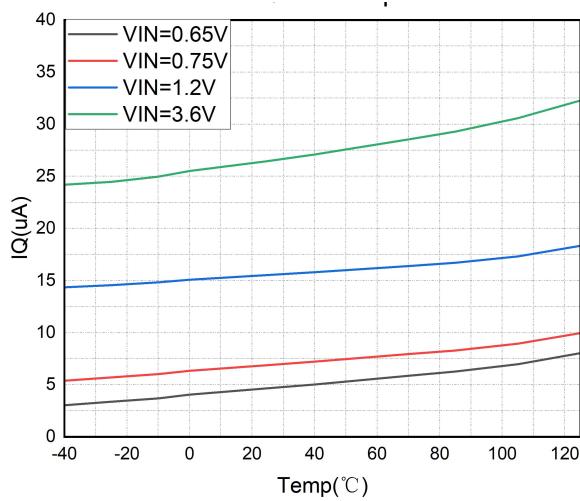


Figure 3. I_Q vs. Temperature

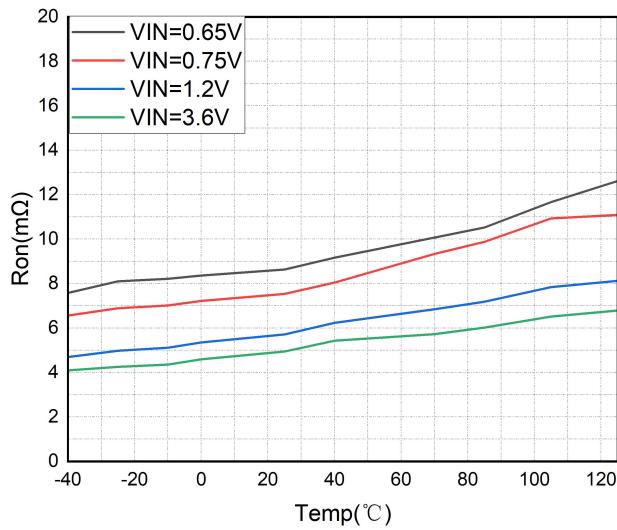



Figure 4. I_{SD} vs. Temperature

load current = 200 mA

Figure 5. R_{ON} vs. Temperature

3.6 V, 4 A, 4.9 mΩ On-Resistance Load Switch

Block Diagram

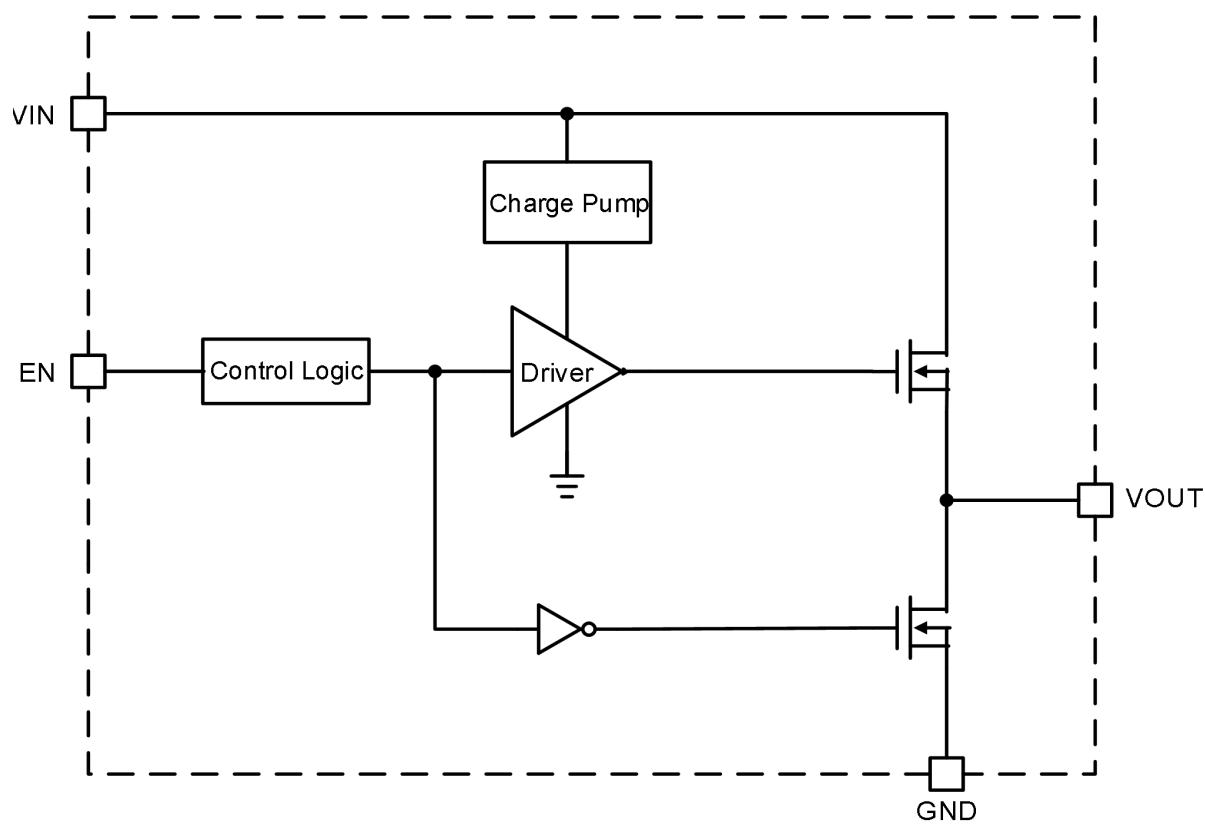


Figure 6. Block diagram

Feature Description

Overview

The DIO7970 is a single channel 4 A load switch in a small, space-saving WLCSP-8 package. This device contains a controlled rise time with a low resistance N-channel MOSFET to limit the inrush current for certain needs.

The DIO7970 is designed to have very low leakage current during OFF state to avoid downstream circuits from pulling high standby current from the supply. The need for additional external components is eliminated by integrated control logic, driver, power supply, and output discharge FET, which reduces solution size and bill of materials (BOM) count.

On and off control

The state of the switch is controlled by the EN pin, by asserting EN high can enable the switch. EN can interface with low-voltage signals for its low threshold. The EN pin is compatible with any microcontroller with 1.2 V, 1.8 V, 2.5 V or 3.3 V GPIOs. This pin cannot be left floating for proper functionality for it does not have an internal bias.

Quick output discharge (R_{DIS})

The DIO7970 has a R_{DIS} feature included. A discharge resistor is connected between VOUT and GND when the switch is disabled, this resistor prevents the output from floating while the switch is disabled and has a typical value of 150 Ω.

Device functional modes

Functional Table lists the functional modes for the DIO7970.

Functional table

DIO7970		
EN Pin	V _{IN} to V _{OUT}	V _{OUT} to GND
Below V _{IL}	OFF	ON
Above V _{IH}	ON	OFF

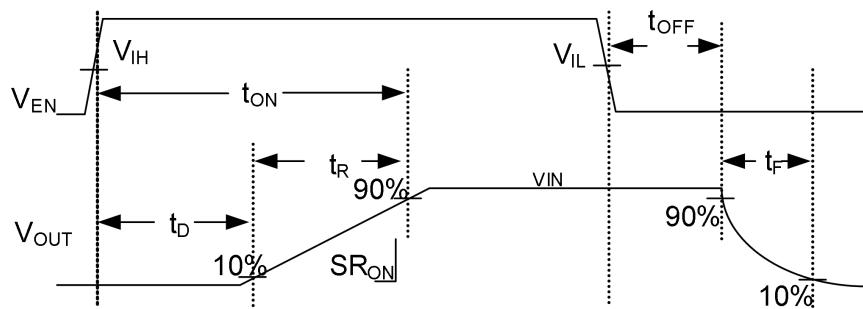

Parameter measurement information

Figure 7. t_{ON} and t_{OFF} waveforms

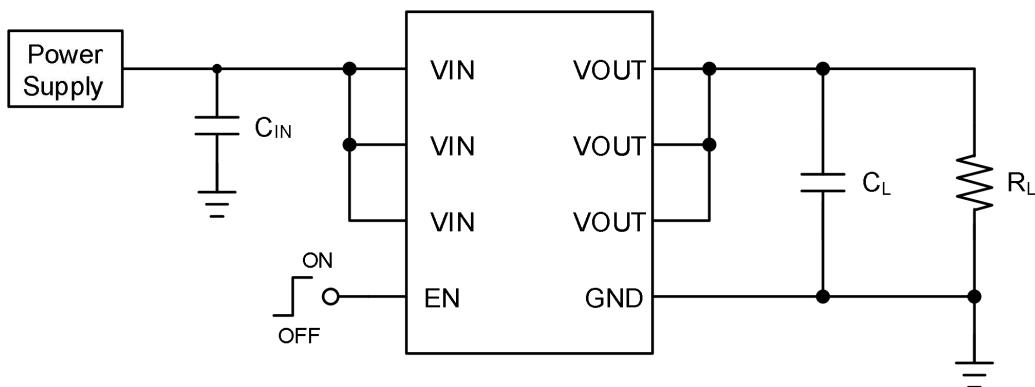

Applications Information**Typical applications**

Figure 8. Typical applications

Thermal consideration

Limiting the junction temperature (T_J) below 125°C is recommended. Use Equation (1) as a guideline to calculate the maximum allowable dissipation, P_{D(max)} for a given output current and ambient temperature.

$$P_{D(\max)} = \frac{T_{J(\max)} - T_A}{\theta_{JA}} \quad (1)$$

where

- $P_{D(\max)}$ is maximum allowable power dissipation
- $T_{J(\max)}$ is maximum allowable junction temperature
- T_A is ambient temperature of the device
- θ_{JA} is junction to air thermal impedance. See the Absolute Maximum Ratings section. This parameter is highly dependent upon board layout

Design requirements

For this design example, use the input parameters shown in the table below.

Design Parameter	Example Value
V_{IN}	0.65 V to 3.6 V
I_{LOAD}	10 mA
Load capacitance	940 μ F
Maximum voltage drop	1%
Maximum inrush current	1.82 A

Maximum voltage drop and on-resistance

The DIO7970 has a typical R_{ON} of 4.9 mΩ at 3.6 V input voltage, with a maximum voltage drop tolerance of 1%. The rail is supplying 10 mA of current; the voltage drop for a rail is calculated based on Equation (2) and Equation (3):

$$\Delta V = R_{ON} \times I_{LOAD} \quad (2)$$

$$\Delta V = 0.049 \text{ mV} \quad (3)$$

The maximum voltage drop is 1% which is 36 mV. The voltage drop caused by the load current across the on resistance is 0.049 mV.

Managing inrush current

The output capacitors must be charged up from 0 V to V_{IN} when the switch is enabled. This charge arrives in the form of inrush current. Inrush current may be calculated using Equation (4).

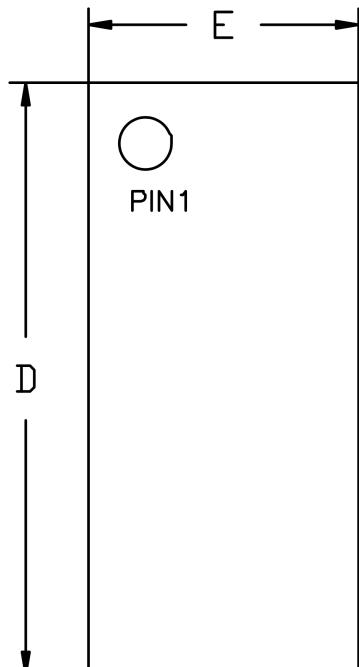
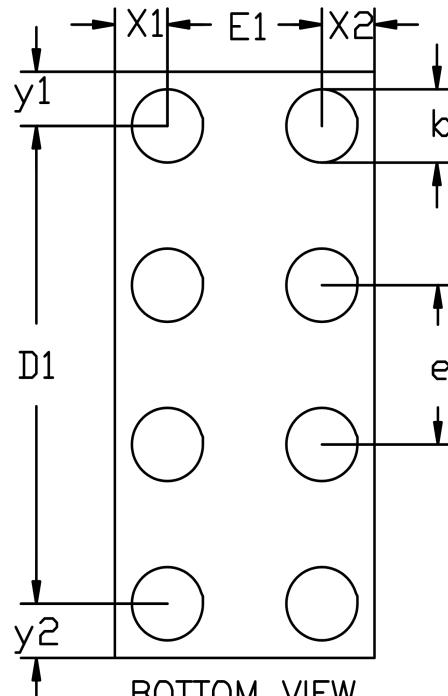
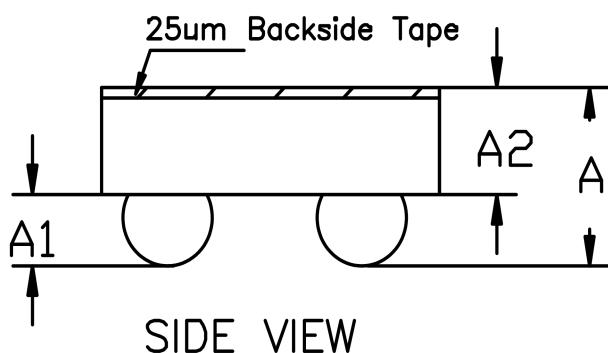
$$I_{INRUSH} = C_L \times S_R = \frac{C_L \times 0.8 \times V_{IN}}{t_R} \quad (4)$$

where

- I_{INRUSH} is the inrush current
- C_L is the load capacitance
- S_R is the output slew rate
- V_{IN} is the input voltage
- t_R is the rise time

Power supply recommendations

The DIO7970 is designed to operate from a V_{IN} range of 0.65 V to 3.6 V. The V_{IN} power supply must be well regulated and placed as close to the device terminal as possible and must be able to withstand all transient load




DIO7970

current steps. Normally, using an input capacitance of 1 μF is sufficient to prevent the supply voltage from dipping when the switch is turned on. Additional bulk capacitance may be required on the input in cases where the power supply is slow to respond to a large transient current or large load current step.

Layout

All traces should be as short as possible for best performance. To be most effective, the input and output capacitors should be placed close to the DIO7970 to minimize the effects that parasitic trace inductances may have on normal and short circuit operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance.

Physical Dimensions: WLCSP-8

TOP VIEW
(MARK SIDE)BOTTOM VIEW
(BALL SIDE)

Common Dimensions (Units of measure = Millimeter)			
Symbol	Min	Nom	Max
A	0.385	0.425	0.465
A1	0.150	0.170	0.190
A2	0.235	0.255	0.275
D	1.810	1.840	1.870
D1	1.500 BSC		
E	0.810	0.840	0.870
E1	0.500 BSC		
b	0.210	0.230	0.250
e	0.500 BSC		
x1	0.170 REF		
x2	0.170 REF		
y1	0.170 REF		
Y2	0.170 REF		

3.6 V, 4 A, 4.9 mΩ On-Resistance Load Switch

DIO7970

3.6 V, 4 A, 4.9 mΩ On-Resistance Load Switch

CONTACT US

Dioo is a professional design and sales corporation for high-quality and performance analog semiconductors. The company focuses on industry markets, such as cell phones, handheld products, laptops, medical equipment, and so on. Dioo's product families include analog signal processing and amplifying, LED drivers, and charger ICs. Go to <http://www.dioo.com> for a complete list of Dioo product families.

For additional product information or full datasheet, please contact our sales department or representatives.