

DIO8030

Ultra-Low Power Microprocessor Reset Circuit

Description

The DIO8030 is micro-processor (μ P) supervisory circuits that are used to monitor the power supplies in μ P and digital systems. The circuits provide excellent reliability.

The DIO8030 has an active-low reset output to perform a single function: assert a reset signal whenever the VCC supply voltage rises above a preset threshold and keeping it asserted for at least 8 ms.

The DIO8030 has an open-drain output which requires an external pull-up resistor connected to power supply. This feature offers high flexibility to reset systems with various supply voltages. The reset comparator is designed to ignore fast transients on VCC, and the outputs are guaranteed to be in the correct logic state for VCC down to 1.0 V over the temperature range.

The device is available in 3-pin SOT23 and SOT23-3 packages.

Features

- Reset pulse width: 8 to 12 ms
- Typical 1.3 μ A supply current $V_{CC} = 1.8$ V
- Guaranteed reset valid to $V_{CC} = 1.0$ V
- Temperature coefficient of reset threshold: 21 ppm $^{\circ}$ C
- Power supply transient immunity
- Operating temperature range: -40 $^{\circ}$ C to 125 $^{\circ}$ C
- Available in SOT23 and SOT23-3

Applications

- Computers
- Controllers
- Intelligent instruments
- Portable/ battery-powered equipments

■ Ordering Information

Ordering Part No.	Top Marking	MSL	RoHS	T _A	Package	
DIO8030ST3	YW3V	3	Green	-40 to 125°C	SOT23	Tape & Reel, 3000
DIO8030SU3	YW3V	3	Green	-40 to 125°C	SOT23-3	Tape & Reel, 3000

If you encounter any issue in the process of using the device, please contact our customer service at Juneketing@dioo.com or phone us at (+86)-21-62116882. If you have any improvement suggestions regarding the datasheet, we encourage you to contact our technical writing team at docs@dioo.com. Your feedback is invaluable for us to provide a better user experience.

Table of Contents

1. Pin Assignment and Functions	1
2. Absolute Maximum Ratings	2
3. Recommended Operating Conditions	2
4. ESD Ratings	2
5. Thermal Considerations	2
6. Electrical Characteristics	2
7. Block Diagram	3
8. Function Description	4
8.1. High-accuracy reference	4
9. Application Information	5
9.1. Negative-going V_{CC} transients	5
10. Physical Dimensions	6
10.1. SOT23	6
10.2. SOT23-3	7

List of Figures

Figure 1. SOT23 / SOT23-3 (Top view)	1
Figure 2. Reset timing	4

1. Pin Assignment and Functions

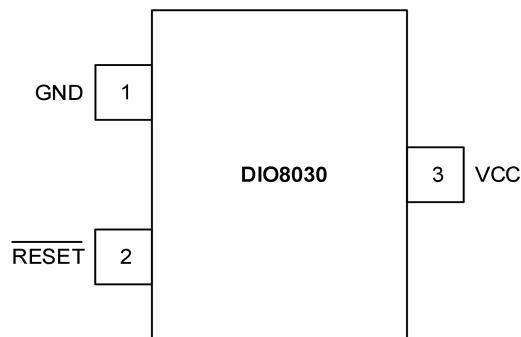


Figure 1. SOT23 / SOT23-3 (Top view)

Pin No.	Name	I/O	Description
1	GND	-	Ground terminal.
2	$\overline{\text{RESET}}$	O	Open-drain output. This output remains low if V_{CC} drops below $(V_{RES} - V_{HYST})$ for at least 8 ms after V_{CC} rises above V_{RES} .
3	VCC	I	Analog input. This pin is both the power supply to internal circuit and the voltage to be monitored.

2. Absolute Maximum Ratings

Exceeding the maximum ratings listed under Absolute Maximum Ratings when designing is likely to damage the device permanently. Do not design to the maximum limits because long-time exposure to them might impact the device's reliability. The ratings are obtained over an operating free-air temperature range unless otherwise specified.

Symbol	Parameter	Rating	Unit
V _{CC}	Terminal voltage (with respect to GND)	-0.3 to 6.0	V
RESET	Terminal voltage (with respect to GND)	-0.3 to 6.0	V
V _{CC}	Input current	20	mA
RESET	Input current	20	mA
T _A	Operating temperature	-40 to 125	°C
T _L	Lead temperature range (soldering 10 s)	300	°C
T _{STG}	Storage temperature	-65 to 150	°C

3. Recommended Operating Conditions

Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. The ratings are obtained over an operating free-air temperature range unless otherwise specified.

Symbol	Parameter	Rating	Unit
V _{CC}	Supply voltage	1 to 5.5	V
T _A	Operating free-air temperature	-40 to 125	°C

4. ESD Ratings

When a statically-charged person or object touches an electrostatic discharge sensitive device, the electrostatic charge might be drained through sensitive circuitry in the device. If the electrostatic discharge possesses sufficient energy, damage might occur to the device due to localized overheating.

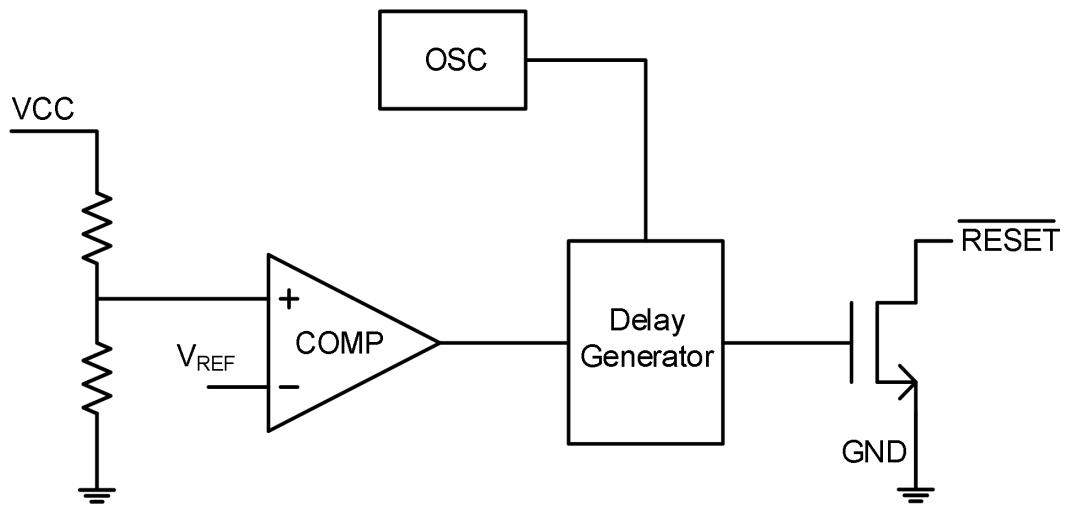
Model	Condition	Value	Unit
Human-body model	ANSI/ESDA/JEDEC: JESD22-A114	±4500	V

5. Thermal Considerations

The thermal resistance determines the heat insulation property of a material. The higher the thermal resistance is, the lower the heat loss. Accumulation of heat energy degrades the performance of semiconductor components.

Symbol	Metric	Value	Unit
R _{θJA}	Junction-to-ambient thermal resistance	300	°C/W

6. Electrical Characteristics


The values are obtained under these conditions unless otherwise specified: typical values at $V_{CC} = 1.8$ V, $T_A = 25^\circ\text{C}$.

Symbol	Parameters	Test Conditions	Min	Typ	Max	Unit
V_{CCMAX}	Maximum input voltage				5.5	V
V_{CCMIN}	Minimum input voltage		1.0			V
I_{VCC}	Supply current	$V_{RES} = 1.6$ V		1.3		μA
V_{RES}	Reset threshold	$T_A = 25^\circ\text{C}$		1.6		V
T_C	Temperature coefficient of reset threshold			21		$\text{ppm}/^\circ\text{C}$
V_{HYST}	Reset threshold hysteresis			20		mV
	V_{CC} to $\overline{\text{RESET}}$ delay	V_{CC} transitions from $(V_{RES} + 0.1)$ V to $(V_{RES} - 0.1)$ V		23		μs
V_{OL}	$\overline{\text{RESET}}$ output voltage low	$V_{CC} = 1.55$ V, $V_{RES} = 1.6$ V, $I_{SINK} = 1$ mA			0.3	V
t_{RES}	Reset pulse width		8	10	12	ms

Note:

(1) Specifications subject to change without notice.

7. Block Diagram

8. Function Description

A microprocessor's (μ P's) reset input starts the μ P in a known state. The DIO8030 asserts reset to prevent code-execution errors during power-up, power-down, or brownout conditions. The device consists of a comparator, a low current high precision voltage reference, a voltage divider, an output delay circuit, and an output driver. The DIO8030 has an active-low reset output to assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold, keeping it asserted for at least 8 ms after V_{CC} has risen above the reset threshold.

The DIO8030 has an open-drain output which requires an external pull-up resistor connected to power supply. This feature offers high flexibility to reset systems with various supply voltages. The reset comparator is designed to ignore fast transients on V_{CC} , and the outputs are guaranteed to be in the correct logic state for V_{CC} down to 1.0 V over the temperature range.

The operation of the device can be best understood by referring to Figure 2.

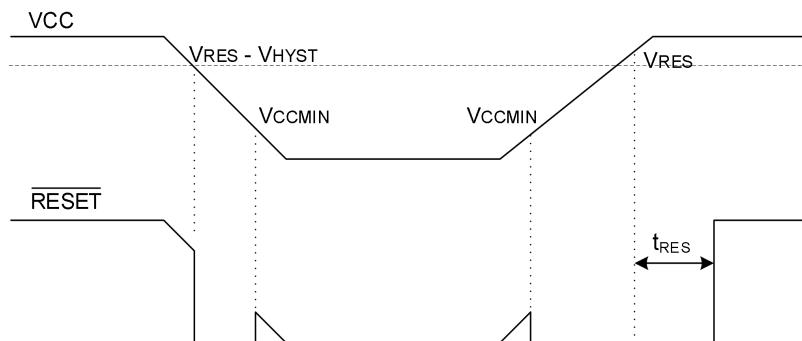


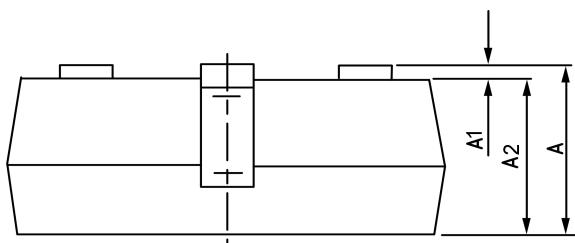
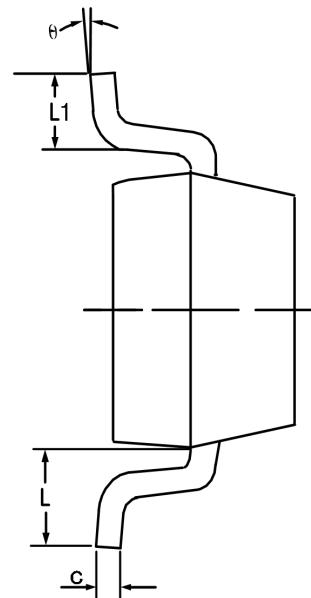
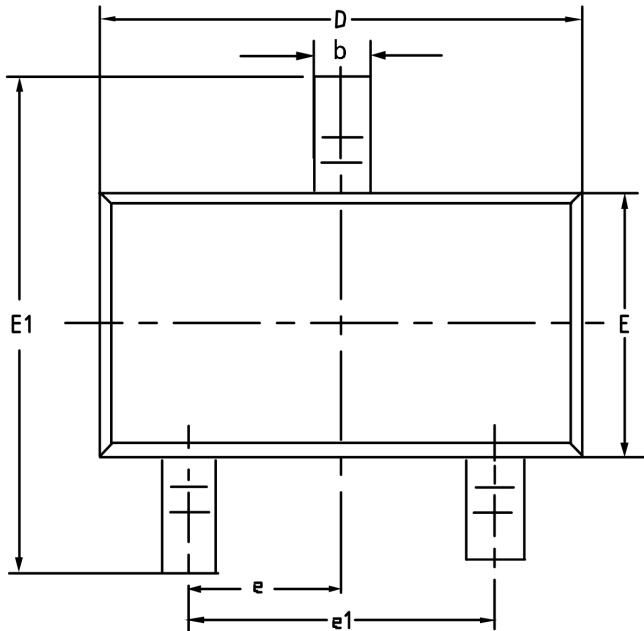
Figure 2. Reset timing

8.1. High-accuracy reference

The comparator in DIO8030 has a bandgap reference of 0.8 V. The bandgap reference provides a stable reference voltage that is relatively independent of temperature, making it ideal for use in high-precision voltage regulators. By using a bandgap reference in a chopping circuit, the output voltage can be regulated with high accuracy and stability over a wide range of operating conditions, making it suitable for a wide range of applications, including power supplies for electronic devices, motor control circuits, and other power electronics systems.

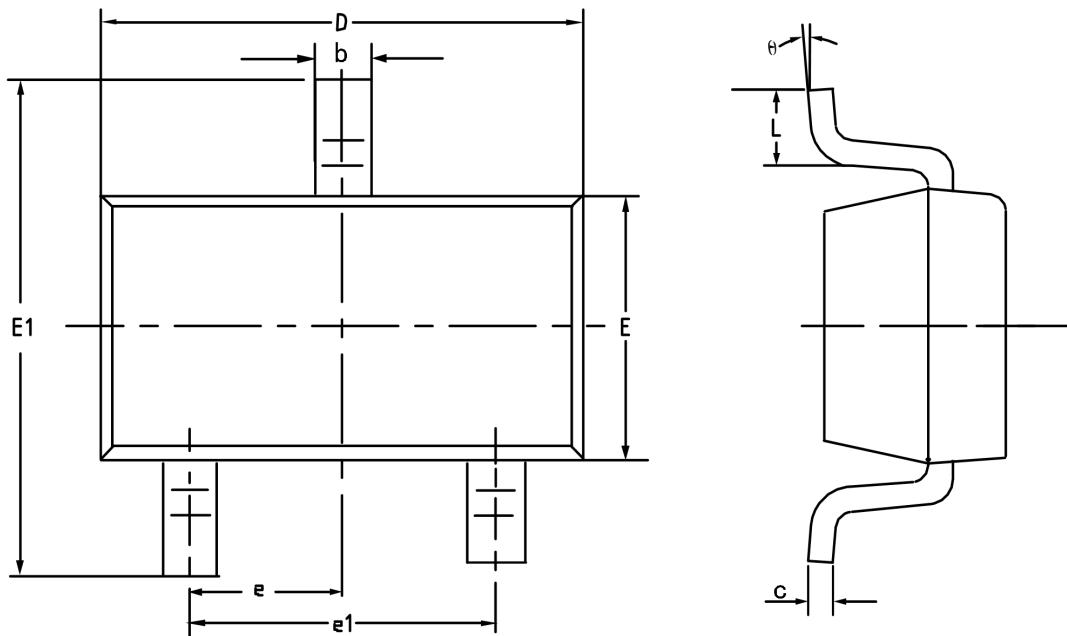
9. Application Information

Important notice: Validation and testing are the most reliable ways to confirm system functionality.




The application information is not part of the specification and is for reference purposes only.

9.1. Negative-going V_{CC} transients

In addition to issuing a reset to the μ P during power-up, power-down, and brownout conditions, the DIO8030 is relatively immune to short-duration negative-going V_{CC} transients (glitches). As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a V_{CC} transient that goes 100 mV below the reset threshold and lasts approximately 20 μ s or less will not cause a reset pulse. A 0.1 μ F bypass capacitor mounted as close as possible to the VCC pin provides additional transient immunity.


10. Physical Dimensions

10.1. SOT23

Common Dimensions (Units of measure = Millimeter)		
Symbol	Min	Max
A	0.90	1.15
A1	0.00	0.10
A2	0.90	1.05
b	0.30	0.50
c	0.08	0.15
D	2.80	3.00
E	1.20	1.40
E1	2.25	2.55
e	0.95 TYP	
e1	1.80	2.00
L	0.55 REF	
L1	0.30	0.50
Θ	0°	8°

10.2. SOT23-3

Common Dimensions (Units of measure = Millimeter)		
Symbol	Min	Max
A	1.05	1.25
A1	0	0.10
A2	1.05	1.15
b	0.30	0.50
c	0.10	0.20
D	2.82	3.02
E	1.50	1.70
E1	2.65	2.95
e	0.95 BSC	
e1	1.80	2.00
L	0.30	0.60
Θ	0°	8°

Disclaimer

This specification and information contained herein are provided on an “AS IS” basis and WITH ALL FAULTS. All product specifications, statements, information, and data (collectively, the “Information”) in this datasheet or made available on the website of www.dioo.com are subject to change without notice. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to his/her application. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, express or implied.