

# DIO6930

## High-Efficiency 3 A, 24 V Input Synchronous Step-Down Converter

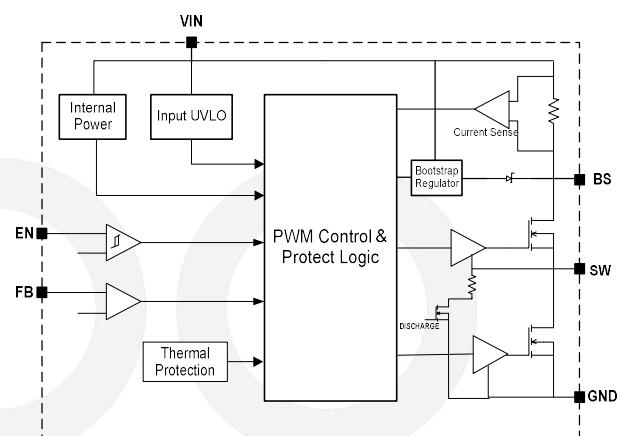
### Features

- Low  $R_{DS(ON)}$  for internal switches (top/bottom)  
80 mΩ/40 mΩ, 3.0 A
- 4.5 ~ 24 V input voltage range
- High-efficiency synchronous mode
- Internal soft-start limits the inrush current
- Over-current protection
- Thermal shutdown
- Available in the TSOT23-6 package

### Descriptions

The DIO6930 is a high-efficiency, high-frequency synchronous step-down DC-DC regulator IC capable of delivering up to 3 A output currents. The DIO6930 family operates over a wide input voltage range from 4.5 V to 24 V and integrates with the main switch and synchronous switch with very low  $R_{DS(ON)}$  to minimize the conduction loss.

The COT architecture with a pseudo-fixed switching frequency operation provides a fast transient response and eases loop stabilization. The DIO6930 operates in pulse skip mode, which maintains high efficiency during a light load operation.


Protection features include over-current protection and thermal shutdown.

The DIO6930 requires a minimal number of readily-available, standard, external components and is available in a space-saving TSOT23-6 package.

### Applications

- Portable navigation devices
- Set top boxes
- Portable TVs
- LCD TVs

### Function Block



### Ordering Information

| Part Number | Top Marking | RoHS  | $T_A$       | Package  |                   |
|-------------|-------------|-------|-------------|----------|-------------------|
| DIO6930TST6 | 30YW        | Green | -40 to 85°C | TSOT23-6 | Tape & Reel, 3000 |

## Pin Assignments

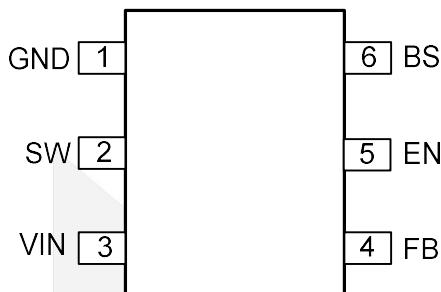



Figure 1. Pin assignment (Top view)

## Pin Definitions

| Pin Name | Description                                                                                                                                                                                                                                                  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GND      | Power ground.                                                                                                                                                                                                                                                |
| SW       | Inductor pin. Connect this pin to the switching node of inductor.                                                                                                                                                                                            |
| VIN      | Power input.                                                                                                                                                                                                                                                 |
| FB       | Output feedback pin. Connect this pin to the center point of the output resistor divider (as shown in Figure 2) to program the output voltage:<br>$V_{OUT} = 0.765 \times (1 + R1/R2)$ . Add optional C2 (10 pF ~ 47 pF) to speed up the transient response. |
| EN       | Enable control. Pull high to turn on. Do not float.                                                                                                                                                                                                          |
| BS       | Bootstrap. Connect a capacitor and a resistor between SW and BS pins to form a floating supply across the high-side switch driver. Recommend to use a 0.1 $\mu$ F BS capacitor.                                                                              |



DIO6930

## Absolute Maximum Ratings

Stresses beyond those listed under the Absolute Maximum Rating table may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

| Symbol        | Parameter                              | Rating         | Unit |
|---------------|----------------------------------------|----------------|------|
| $V_s$         | Supply voltage ( $V_+ - V_-$ )         | 28             | V    |
|               | EN, SW voltage                         | $V_{IN} + 0.3$ | V    |
|               | FB voltage                             | 6              | V    |
|               | BS voltage                             | $SW + 6$       | V    |
| $\Theta_{JA}$ | Junction-to-ambient thermal resistance | 87.9           | °C/W |
| $\Theta_{JC}$ | Junction-to-case thermal resistance    | 42.2           |      |
| $T_{STG}$     | Storage temperature range              | -65 to 150     | °C   |
| $T_J$         | Junction temperature range             | 150            | °C   |
| $T_L$         | Lead temperature range                 | 260            | °C   |

## Recommend Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. DIOO does not recommend exceeding them or designing to absolute maximum ratings.

| Symbol | Parameter                  | Rating     | Unit |
|--------|----------------------------|------------|------|
| $V_s$  | Supply voltage             | 4.5 to 24  | V    |
| $T_J$  | Junction temperature range | -40 to 125 | °C   |
| $T_A$  | Ambient temperature range  | -40 to 85  | °C   |

**DIO6930**

## Electrical Characteristics

$V_{IN} = 12\text{ V}$ ,  $V_{OUT} = 1.2\text{ V}$ ,  $L = 2.2\text{ }\mu\text{H}$ ,  $C_{OUT} = 47\text{ }\mu\text{F}$ ,  $T_A = 25^\circ\text{C}$ ,  $I_{OUT} = 1\text{ A}$  unless otherwise specified.

| Symbol       | Parameter                                      | Test Conditions                                 | Min   | Typ   | Max   | Unit             |
|--------------|------------------------------------------------|-------------------------------------------------|-------|-------|-------|------------------|
| $V_{IN}$     | Input voltage range                            |                                                 | 4.5   |       | 24    | V                |
| $I_Q$        | Quiescent current                              | $I_{OUT} = 0$ , $V_{FB} = V_{REF} \times 105\%$ |       | 140   |       | $\mu\text{A}$    |
| $I_{SHDN}$   | Shutdown current                               | $EN = 0$                                        |       | 5     | 10    | $\mu\text{A}$    |
| $V_{REF}$    | Feedback reference voltage                     |                                                 | 0.754 | 0.765 | 0.776 | V                |
| $I_{FB}$     | FB input current                               | $V_{FB} = 3.3\text{ V}$                         | -50   |       | 50    | nA               |
| $R_{DS(ON)}$ | Top FET $R_{ON}$                               |                                                 |       | 80    |       | $\text{m}\Omega$ |
| $R_{DS(ON)}$ | Bottom FET $R_{ON}$                            |                                                 |       | 40    |       | $\text{m}\Omega$ |
| $I_{LIM}$    | Low side power FET current limit               |                                                 | 3.0   | 4.0   |       | A                |
| $V_{ENH}$    | EN rising threshold                            |                                                 | 1.5   |       |       | V                |
| $V_{ENL}$    | EN falling threshold                           |                                                 |       |       | 0.4   | V                |
| $V_{UVLO}$   | $V_{IN}$ undervoltage unlock threshold, rising |                                                 |       |       | 4.45  | V                |
| $f_{sw}$     | Switching frequency                            |                                                 |       | 500   |       | kHz              |
|              | Min on time                                    |                                                 |       | 40    |       | ns               |
|              | Min off time                                   |                                                 |       | 180   |       | ns               |
| $t_{ss}$     | Soft-start time                                |                                                 |       | 1     |       | ms               |
| $T_{SD}$     | Thermal shutdown temperature                   |                                                 |       | 148   |       | $^\circ\text{C}$ |
| $T_{HYS}$    | Thermal shutdown hysteresis                    |                                                 |       | 20    |       | $^\circ\text{C}$ |

Specifications subject to change without notice.

**High-Efficiency 3 A, 24 V Input Synchronous Step Down Converter**

## Typical Application

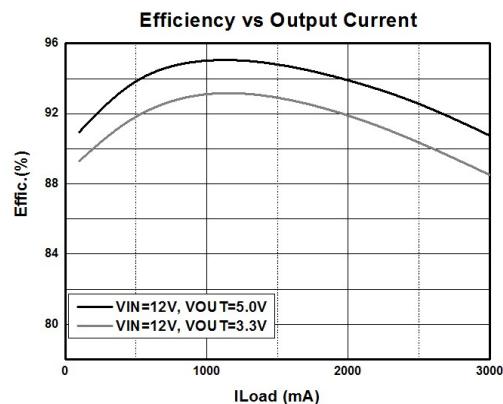
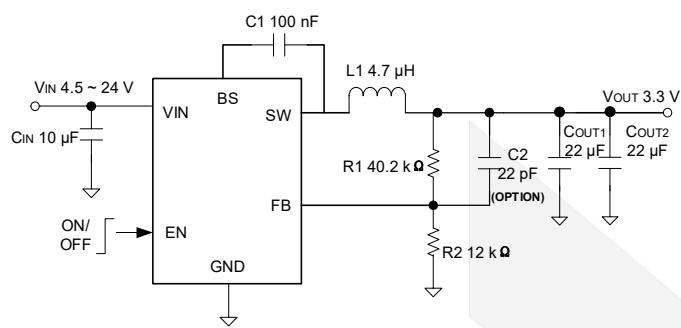
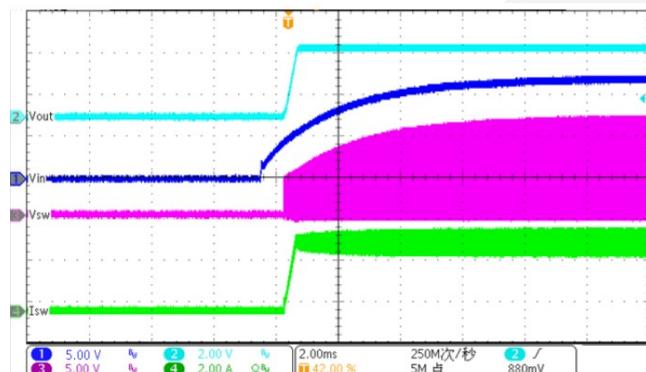
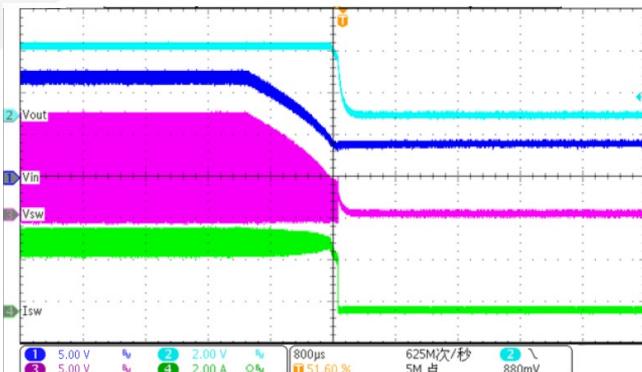




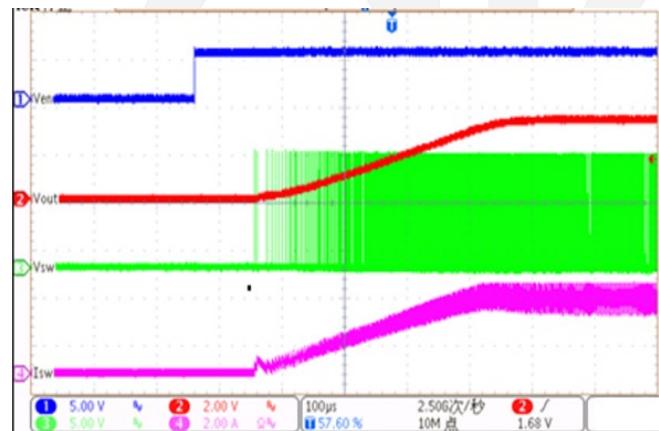

Figure 2. Typical application

## Typical Performance Characteristics


### Start up from VIN

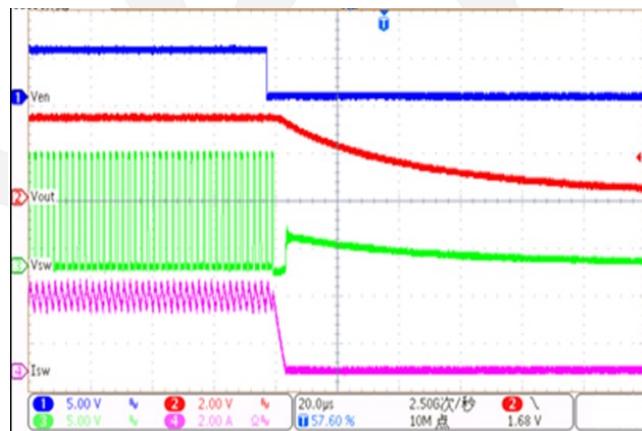
( $V_{IN} = 12V$ ,  $V_{OUT} = 3.3V$ , Load = 1  $\Omega$ )

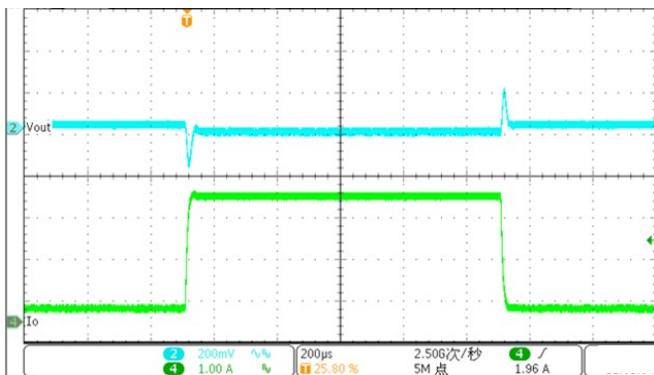
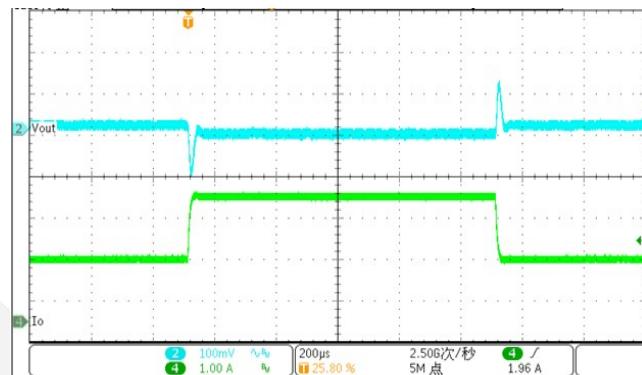
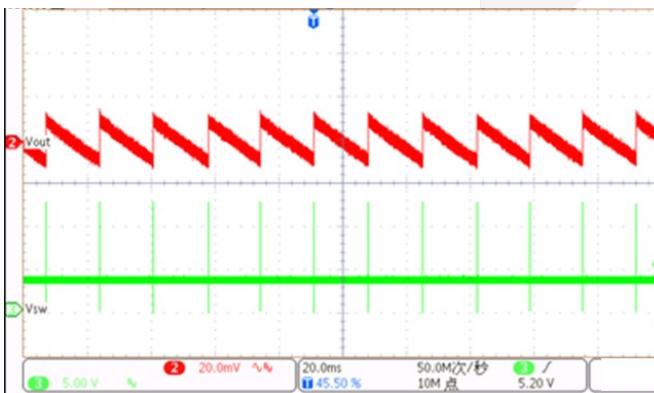
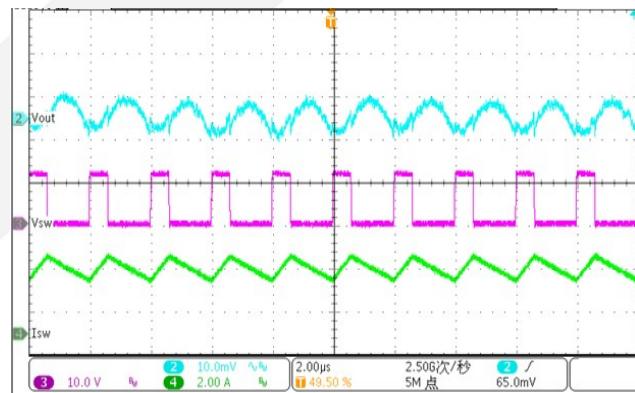
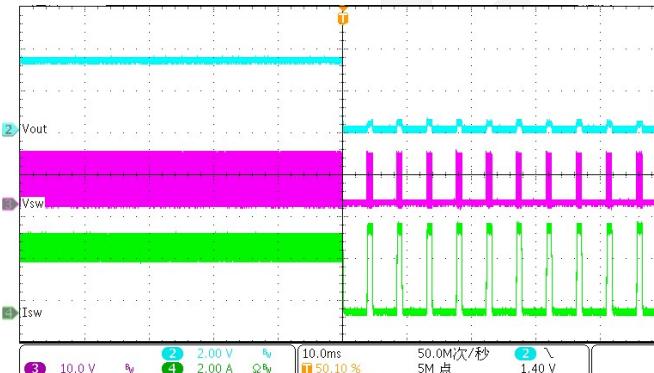
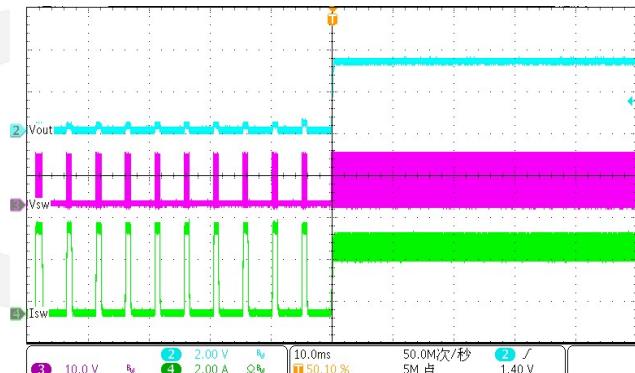



### Shut down from VIN

( $V_{IN} = 12V$ ,  $V_{OUT} = 3.3V$ , Load = 1  $\Omega$ )




### Start up from Enable







( $V_{IN} = 12V$ ,  $V_{OUT} = 3.3V$ , Load = 1  $\Omega$ )



### Shut down from Enable

( $V_{IN} = 12V$ ,  $V_{OUT} = 3.3V$ , Load = 1  $\Omega$ )



**Load transient**
 $(V_{IN} = 12 \text{ V}, V_{OUT} = 3.3 \text{ V}, \text{Load} = 0.3 \sim 3 \text{ A})$ 

**Load transient**
 $(V_{IN} = 12 \text{ V}, V_{OUT} = 3.3 \text{ V}, \text{Load} = 1.5 \sim 3 \text{ A})$ 

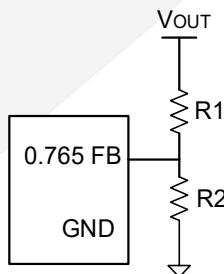
**Ripple**
 $(V_{IN} = 12 \text{ V}, V_{OUT} = 3.3 \text{ V}, \text{Load} = 0 \text{ A})$ 

**Ripple**
 $(V_{IN} = 12 \text{ V}, V_{OUT} = 3.3 \text{ V}, \text{Load} = 3 \text{ A})$ 

**Short-circuit protection**
 $(V_{IN} = 12 \text{ V}, V_{OUT} = 3.3 \text{ V}, \text{Load} = 3 \text{ A})$ 

**Short-circuit recovery**
 $(V_{IN} = 12 \text{ V}, V_{OUT} = 3.3 \text{ V}, \text{Load} = 3 \text{ A})$ 


## Application Information


The DIO6930 is a synchronous buck regulator IC that integrates the COT control, and top and bottom switches on the same die to minimize the switching transition loss and conduction loss. With ultra-low  $R_{DS(ON)}$  power switches and proprietary COT control, this regulator IC can achieve the highest efficiency and the highest switch frequency simultaneously to minimize the external inductor and capacitor size, and thus achieving the minimum solution footprint.

Because of the high integration in the DIO6930 IC, the application circuit based on this regulator IC is rather simple. Only input capacitor  $C_{IN}$ , output capacitor  $C_{OUT}$ , output inductor L, and feedback resistors (R1 and R2) need to be selected for the targeted applications specifications.

### Feedback resistor dividers R1 and R2

Choose R1 and R2 to program the proper output voltage. To minimize the power consumption under light loads, it is desirable to choose large resistance values for both R1 and R2. A value of between 10 k $\Omega$  and 1 M $\Omega$  is highly recommended for both resistors. If  $V_{out}$  is 3.3 V, and  $R1 = 40.2$  k $\Omega$  is chosen, then R2 can be calculated to be 12 k $\Omega$ .

$$R_2 = \frac{0.765V}{V_{OUT} - 0.765V} \times R_1$$



### Input capacitor $C_{IN}$

This ripple current through input capacitor is calculated as:

$$I_{CIN\_RMS} = I_{OUT} \times \sqrt{D(1 - D)} \quad 1$$

This formula has a maximum at  $V_{IN} = 2V_{OUT}$  condition, where  $I_{CIN\_RMS} = I_{OUT}/2$ . This simple worst-case condition is commonly used for DC/DC design.

To minimize the potential noise problem, place a typical X5R or a better grade ceramic capacitor really close to the IN and GND pins. Care should be taken to minimize the loop area formed by  $C_{IN}$ , and IN/GND pins. In this case, a 10  $\mu$ F, low ESR ceramic capacitor is recommended.

### Output capacitor $C_{OUT}$

The output capacitor is selected to handle the output ripple noise requirements. Both steady state ripple and transient requirements must be taken into consideration when selecting this capacitor. For the best

performance, it is recommended to use X5R or a better grade ceramic capacitor greater than 22  $\mu$ F capacitance.

### Output inductor L

There are several considerations in choosing this inductor.

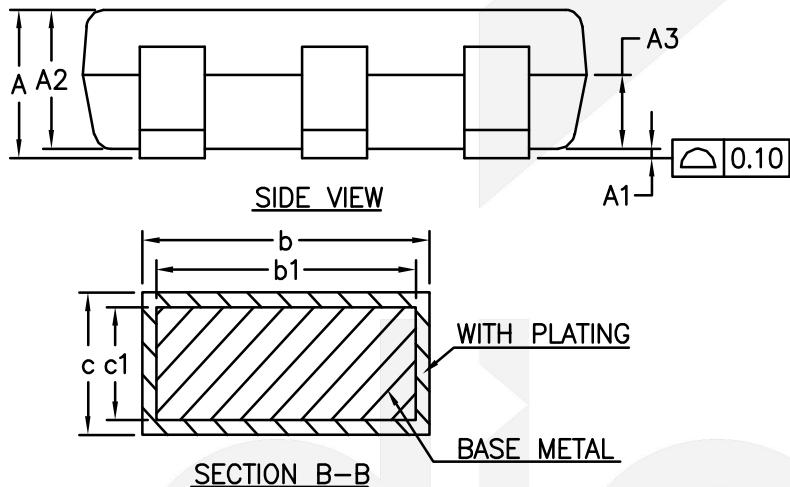
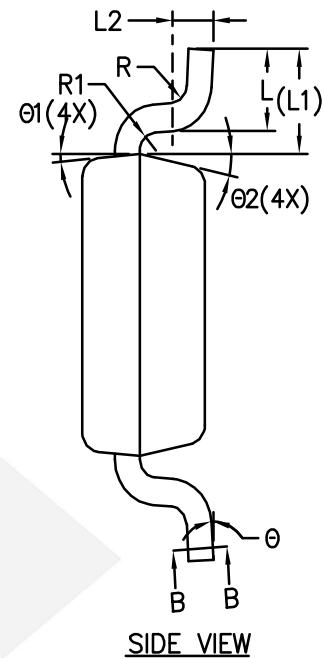
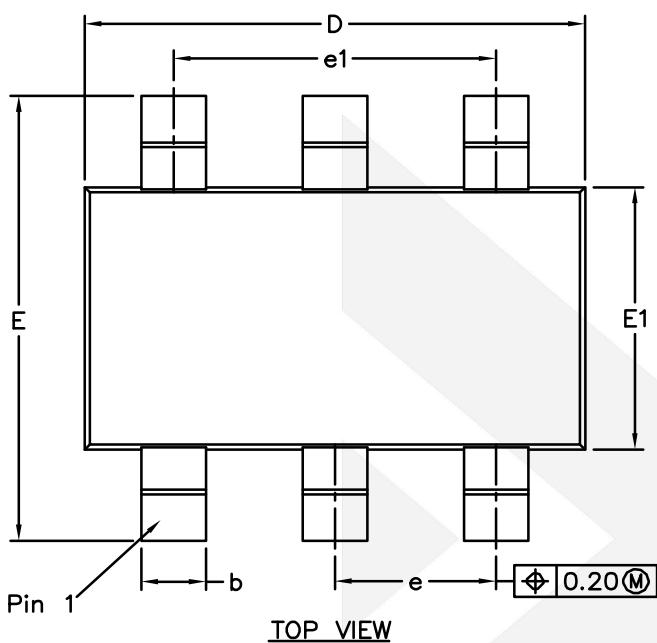
- 1) Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about 40% of the maximum output current. The inductance is calculated as:

$$L = \frac{V_{OUT} \times (1 - V_{OUT} / V_{IN, MAX})}{f_{SW} \times I_{OUT, MAX} \times 40\%} \quad 2$$

where  $f_{SW}$  is the switching frequency and  $I_{OUT, MAX}$  is the maximum load current. The DIO6930 regulator IC is quite tolerant of different ripple current amplitude. Consequently, the final choice of inductance can be slightly off the calculation value without significantly impacting the performance.

- 2) The saturation current rating of the inductor must be selected to be greater than the peak inductor current under full load conditions.

$$I_{SAT,MIN} > I_{OUT,MAX} + \frac{V_{OUT} \times (1 - V_{OUT} / V_{IN, MAX})}{2 \times f_{SW} \times L} \quad 3$$




- 3) The DCR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement. It is desirable to choose an inductor with  $DCR < 50 \text{ m}\Omega$  to achieve a good overall efficiency.

### Layout Design:

The layout design of DIO6930 regulator is relatively simple. For the best efficiency and minimum noise problems, place the following components close to the IC:  $C_{IN}$ , L, R1 and R2.

- 1) Maximize the PCB copper area connected to the GND pin to achieve the best thermal and noise performance. If the board space allows, a ground plane is highly desirable.
- 2)  $C_{IN}$  must be close to IN and GND Pins. The loop area formed by  $C_{IN}$  and GND must be minimized.
- 3) The PCB copper area associated with SW pin must be minimized to avoid the potential noise problem.
- 4) The components R1 and R2, and the trace connected to the FB pin must NOT be adjacent to the SW net on the PCB layout to avoid the noise problem.
- 5) If the system chip interfacing with the EN pin has a high impedance state at shutdown mode and the IN pin is connected directly to a power source such as a Li-Ion battery, it is desirable to add a pull-down 1  $\text{M}\Omega$  resistor between the EN and GND pins to prevent the noise from falsely turning on the regulator at shutdown mode.

## Physical Dimensions: TSOT23-6



| Common Dimensions (mm) |           |      |      |
|------------------------|-----------|------|------|
| Symbol                 | Min       | Nom  | Max  |
| A                      | -         | -    | 0.90 |
| A1                     | 0         | -    | 0.15 |
| A2                     | 0.65      | 0.75 | 0.85 |
| A3                     | 0.35      | 0.40 | 0.45 |
| b                      | 0.36      | -    | 0.50 |
| b1                     | 0.36      | 0.38 | 0.45 |
| c                      | 0.14      | -    | 0.20 |
| c1                     | 0.14      | 0.15 | 0.16 |
| D                      | 2.85      | 2.95 | 3.05 |
| E                      | 2.60      | 2.80 | 3.00 |
| E1                     | 1.60      | 1.65 | 1.70 |
| e                      | 0.90      | 0.95 | 1.00 |
| e1                     | 1.80      | 1.90 | 2.00 |
| L                      | 0.30      | 0.45 | 0.60 |
| L1                     | 0.575 REF |      |      |
| L2                     | 0.25 BSC  |      |      |
| R                      | -         | -    | 0.25 |
| R1                     | -         | -    | 0.25 |
| θ                      | 0°        | -    | 8°   |
| θ1                     | 3°        | 5°   | 7°   |
| θ2                     | 10°       | 12°  | 14°  |



DIO6930

High-Efficiency 3 A, 24 V Input Synchronous Step Down Converter

## CONTACT US

Dioo is a professional design and sales corporation for high-quality and performance analog semiconductors. The company focuses on industry markets, such as cell phones, handheld products, laptops, medical equipment, and so on. Dioo's product families include analog signal processing and amplifying, LED drivers, and charger ICs. Go to <http://www.dioo.com> for a complete list of Dioo product families.

For additional product information or full datasheet, please contact our sales department or representatives.

