

DIO7330

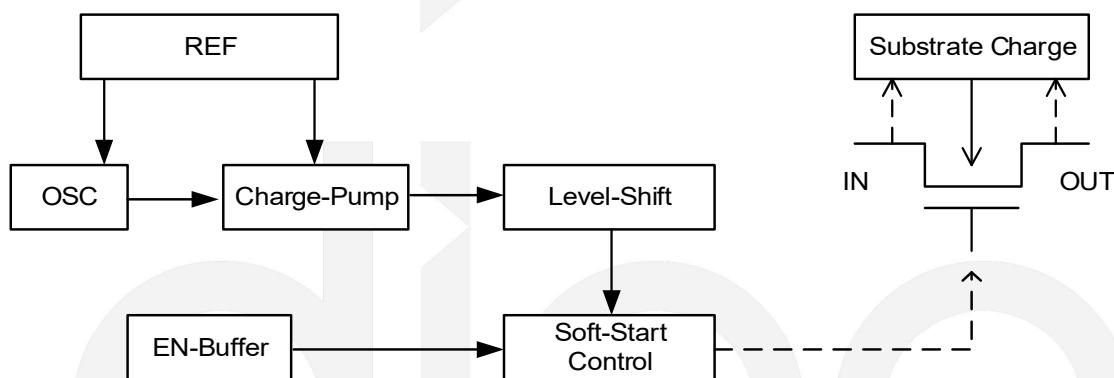
5.5V rated 2.4A capable slew rate controlled load switch

Features

- 1.8V to 5.5V operation voltage range
- Low quiescent current $< 1\mu\text{A}$ when disabled
- Reverse current blocking when switch is off
- 40mΩ N-MOSFET
- DC Current Up to 2.4A
- Peak Current Up to 5A
- Built-in Soft-Start 3ms
- Active High with Integrated Bridge
- Pb-Free Device DFN-4 1.2x1.6mm

Descriptions

The DIO7330 is a Low On-Resistance N-channel MOSFET controlled by a soft-start sequence of 3ms for mobile applications.


The low $R_{DS(\text{on})}$ allows system supplying or battery charging up to DC 2.4A. The device is enable automatically if a power supply is connected on V_{IN} pin (active High) and maintained off if no power input(internal pull down).

Applications

- Cell Phone and Digital Camera
- PDA and Notebook
- LCD Monitor
- TV and Set-Top Box

Due to the current consumption optimization, the leakage current is drastically decreased from the battery connected to the device, which allows extending the battery life.

Block Diagram

Ordering Information

Order Part Number	Top Marking		T_A	Package	
DIO7330DN4	YW30	Green	-40 to +85°C	TDFN-4	Tape & Reel, 3000

Pin Assignments

DFN-4 (TOP VIEW)

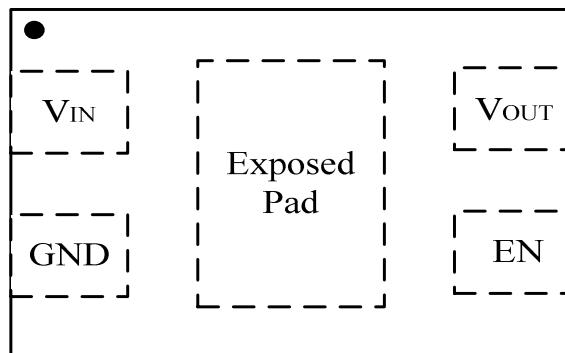


Figure 1 Pin Assignment

Pin Description

Pin	Name	Type	Description
1	V _{IN}	Power	Switch Input voltage; connect a 1 μ F or greater ceramic capacitor from IN to GND as close as possible to the IC.
2	GND	Power	GND
3	EN	Input	Enable input, logic high active.
4	V _{OUT}	Output	Switch Output; connect a 1 μ F capacitor from V _{OUT} to GND as close as possible to the IC.
	Exposed Pad	Power	Exposed pad can be connected to GND plane for dissipation purpose or any other thermal plane.

DIO7330

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Rating" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameter		Rating	Unit
V_{IN}		-0.3 to 6	V
$V_{OUT,EN}$		-0.3 to 6	V
Storage Temperature		-65 to 150	°C
Maximum Junction Range		-40 to 145	°C
Thermal Resistance, θ_{JA}		170	°C/W
Power Dissipation, ($T_A=25^\circ C$)		580	mW
Latch Up Protection		200	mA
ESD	HBM, JEDEC: JESD22-A114	6	kV
	CDM, JEDEC : JESD22-C101	2	

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation to ensure optimal performance to the datasheet specifications. DIOO does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{IN}	Operational Power Supply		1.8		5.5	V
V_{EN}	Enable Voltage		0		5.5	V
C_{IN}	Decoupling input capacitor		1			μF
C_{OUT}	Decoupling output capacitor	USB port per Hub	1			μF
I_{OUT}	Maximum DC Current	$T_A=25^\circ C$			3	A
I_{PEAK}	Maximum Peak Current	1ms pulse width at 217Hz , $T_A=25^\circ C$			5	A
T_A	Ambient Temperature Range		-40	25	85	°C
T_J	Junction Temperature Range		-40	25	125	°C

5.5V rated 2.4A capable slew rate controlled load switch

Electrical Characteristics

$T_A=25^\circ\text{C}$ $V_{IN} = 5\text{V}$, unless otherwise noted.

Symbol	Parameter	Conditions		Min.	Typ.	Max.	Unit
POWER SWITCH							
$R_{DS(ON)}$	Static drain-source on-state resistance	$V_{IN}=1.8\sim 5.5\text{V}$, $T_A = 25^\circ\text{C}$			40		$\text{m}\Omega$
		$I_{OUT}=200\text{mA}$, $-40^\circ\text{C} < T_A < 85^\circ\text{C}$				70	$\text{m}\Omega$
t_R	Switch turn-on edge rising time	$V_{IN}=4.5\text{V}$	$C_{LOAD}=100\mu\text{F}$, $R_{LOAD}=150\Omega$	2	2.5	5	ms
t_F	Switch turn-off edge falling time	$V_{IN}=4.5\text{V}$	$C_{LOAD}=100\mu\text{F}$, $R_{LOAD}=150\Omega$		3		ms
t_{DON}	Switch turn-on delay	$V_{IN}=4.5\text{V}$; $C_{LOAD}=100\mu\text{F}$	50% of EN pin to $V_{OUT}=10\%$ of fully on		1.5		ms
t_{DOFF}	switch turn-off delay	$V_{IN}=4.5\text{V}$; $C_{LOAD}=100\mu\text{F}$	50% of EN pin to $V_{OUT}=90\%$ of fully on		10		μs
ENABLE INPUT EN							
V_{IH}	High-level input voltage			1.45			V
V_{IL}	Low-level input voltage					0.85	V
R_{PD}	Pull-down resistance at EN pin	$T_A = -45^\circ\text{C} \text{ to } +85^\circ\text{C}$			1		$\text{M}\Omega$
REVERSE-LEAKAGE PROTECTION							
I_{REV}	Reverse-current protection	$V_{IN}=0\text{V}$, $V_{OUT}=4.2\text{V}$, $-40^\circ\text{C} < T_A < 85^\circ\text{C}$, EN="0"			1	2	μA
QUIESCENT CURRENT							
I_Q	Current consumption	$V_{IN}=5\text{V}$, V_{OUT} floating, EN =5V			100	180	μA
I_{SDN}	shutdown current	$V_{IN}=5\text{V}$, En="0", $V_{OUT}=\text{GND}$, $-40^\circ\text{C} < T_A < 85^\circ\text{C}$				1	μA

Note: This parameter is guaranteed by design and characterization.

Application information

Enable

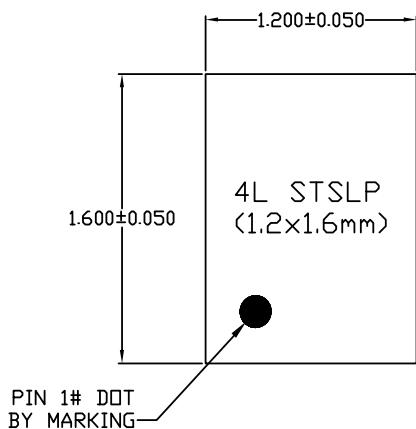
Enable pin voltage in the active high means on. This part is automatically turned on when the input voltage enables the device. In the other side, this part is turned off when the input voltage is not available, which limits current consumption from battery to V_{OUT} pin.

Input Capacitor

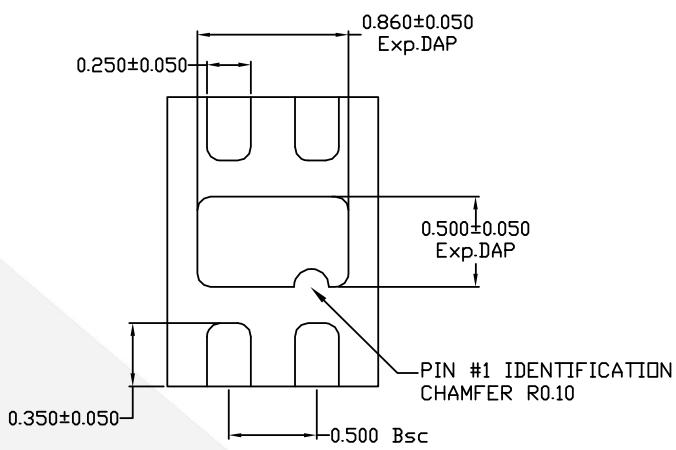
To limit the voltage drop on the input supply caused by transient inrush currents, an input capacitor is placed to the V_{IN} and GND as close as possible. The value of the input capacitor is recommended 1 μ F at least. Higher values capacitor can help to further reduce the voltage drop.

Output Capacitor

While the device works, a capacitor from 100nF to 1 μ F across V_{OUT} and GND is recommended to accommodate load transient condition. It also helps to prevent parasitic inductance forces V_{OUT} below GND when switching off. Output capacitor has the minimal effect on device's turn on slew rate time.


Blocking Control

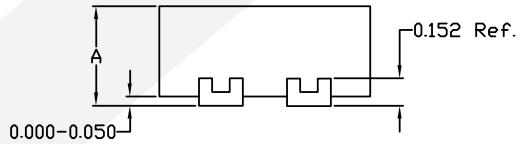
The blocking control circuitry switches the bulk of the power NMOS. When the part is off (No V_{IN} or EN tied to GND externally), the body diode limits the leakage current I_{REV} from OUT to IN. In this condition, the anode of the body diode is connected to IN pin and the cathode is connected to OUT pin. During the operation, the anode of the body diode is connected to OUT pin and the cathode is connected to IN pin to prevent the discharge of the power supply.



DIO7330

Physical Dimensions: DFN-4 1.2*1.6

TOP VIEW



BOTTOM VIEW

NOTE:

1). 'A' DIMENSION AS BELOW TABLE

A	STSLP	
	MAX.	0.600
	NOM.	0.550
	MIN.	0.500

SIDE VIEW

5.5V rated 2.4A capable slew rate controlled load switch

DIO7330

5.5V rated 2.4A capable slew rate controlled load switch

CONTACT US

Dioo is a professional design and sales corporation for high-quality and performance analog semiconductors. The company focuses on industry markets, such as, cell phone, handheld products, laptop, and medical equipment and so on. Dioo's product families include analog signal processing and amplifying, LED drivers and charger IC. Go to <http://www.dioo.com> for a complete list of Dioo product families.

For additional product information, or full datasheet, please contact with our Sales Department or Representatives.

dioo