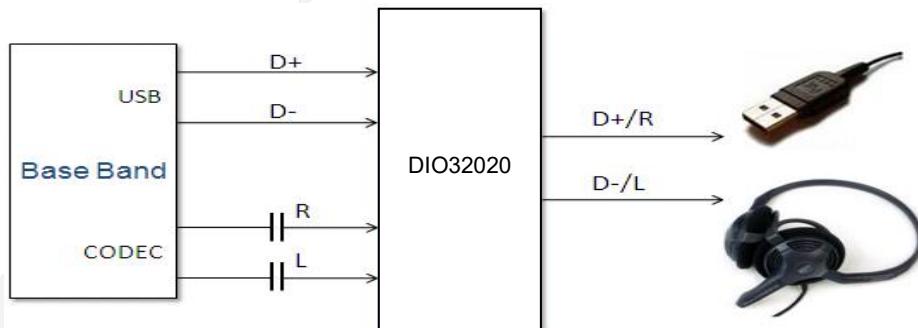


DIO32020

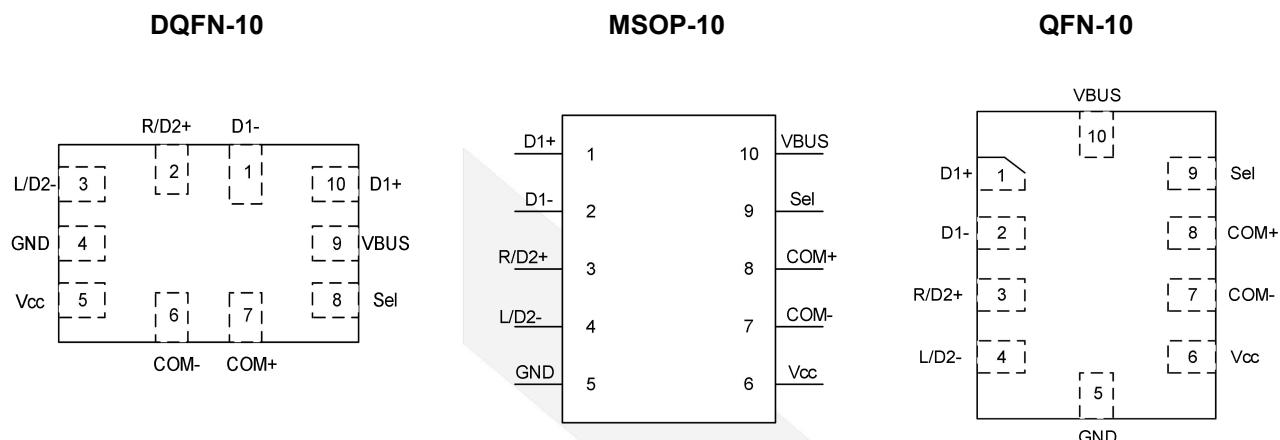
USB 2.0 High-Speed and Audio/USB/UART Switch with Negative Swing Capacity


Features

- Low R_{ON} audio/USB analog switch
- Low USB C_{ON} : 7 pF
- Negative signal swing capable
- Low audio distortion
- USB switch -3 dB bandwidth: 1100 MHz
- High crosstalk and off-isolation
- Voltage supply operation: 2.7 to 5.5 V
- Three green packages: DQFN-10, QFN-10, MSOP-10

Applications

- Cell-phones/PDA
- MP3/MP4/PMP
- Portable instrumentation
- Battery powered communications
- Computer peripherals


Block Diagram

Ordering Information

Part Number	Top Marking	RoHS	T_A	Package	
DIO32020LP10	YW0A	Green	-40 to 85°C	DQFN-10	Tape & Reel, 3000
DIO32020QN10	YW0A	Green	-40 to 85°C	QFN-10	Tape & Reel, 3000
DIO32020MP10	D32020	Green	-40 to 85°C	MSOP-10	Tape & Reel, 3000

Pin Assignment

Figure 1. Top View

Pin Descriptions

Pin Name	Direction	Description
D1+, D1-	I/O	Differential USB Data Input 1
R/D2+, L/D2-	I/O	Audio R/L or differential USB data input 2
V _{BUS}	I	Switch selection
COM+/COM-	I/O	Data/audio common port
Sel	I	Control input
V _{cc} / GND	P	Power

Truth Table

Sel	V _{BUS}	L/D2-, R/D2+	D1+, D1-
Low	Low	ON	OFF
Low	High	OFF	ON
High	X	ON	OFF

Absolute Maximum Ratings

Stresses beyond those listed under the Absolute Maximum Rating table may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Rating	Unit
V_{CC}	Supply Voltage	-0.5 to 6.5	V
V_{BUS}	V_{BUS} Control Input Voltage	-0.5 to 6.5	V
V_{IN}	A_{SEL} Control Input Voltage	-0.5 to 6.5	V
V_{SW}	USB Path Analog Signal Voltage	-3.5 to V_{CC}	V
	Audio Path Analog Signal Voltage	-3.5 to 6.5	
	Storage Temperature	-65 to 150	°C
I_{IN}	A_{SEL} Control Input Current	5	μA
	V_{BUS} Control Input Current	5	
I_{SW_CON}	Analog Signal Continuous Current	±100	mA
I_{SW_PK}	Analog Signal Peak Current	±500	mA
ESD	HBM, JEDEC: JESD22-A114	I/O to GND	5
		Others	8
			kV

Recommend Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. DIOO does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating	Unit
V_{CC}	Supply voltage	2.7 to 5.5	V
V_{IN}	V_{BUS} control input voltage	0 to 5.5	V
	A_{SEL} control input voltage	0 to V_{CC}	
V_{SW}	USB to COM analog signal voltage	-3 to V_{CC}	V
	Audio to COM analog signal voltage	-3 to V_{CC}	
T_A	Operating temperature range	-40 to 85	°C

DIO32020

DC Electrical Characteristics

All typical value are at $T_A = 25^\circ\text{C}$ unless otherwise specified.

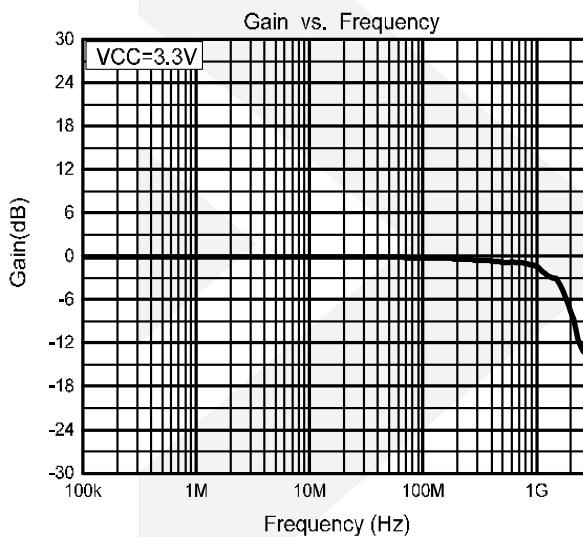
Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Control input ($T_A = 25^\circ\text{C}$, $V_{CC} = 3.3\text{ V}$)						
V_{IH}	A_{SEL} control input high voltage	$V_{CC} = 2.7 - 4.2\text{ V}$		1.3		V
V_{IL}	A_{SEL} control input low voltage	$V_{CC} = 2.7 - 4.2\text{ V}$			0.5	V
I_{IN}	A_{SEL} control input leakage current	$0 \leq V_{SW} \leq V_{CC}$		1	2	μA
V_{IH}	V_{BUS} control input high voltage	$V_{CC} = 2.7 - 4.2\text{ V}$	1.3			V
V_{IL}	V_{BUS} control input low voltage	$V_{CC} = 2.7 - 4.2\text{ V}$			0.5	V
I_{IN}	V_{BUS} control input leakage current	$0 \leq V_{SW} \leq V_{CC}$		1	2	μA
R_{VBUS_PD}	V_{BUS_CTRL} pull down resistance	$I_{ON} = 10\text{ mA}$		4000		$\text{k}\Omega$
Supply current and leakage ($T_A = 25^\circ\text{C}$, $V_{CC} = 3.3\text{ V}$)						
I_{OZ-USB}	Off leakage current of port DN/DP	$DN/DP = 0\text{ V to }4.2\text{ V, R, L, COM+, COM- float}$	-1		1	μA
$I_{OZ-AUDIO}$	Off leakage current of port R/L	$R/L = -3\text{ V to }3\text{ V, DN, DP, COM+, COM- float}$	-1		1	μA
I_{ON-USB}	On leakage current of USB switch	$COM+/COM- = 0\text{ V to }4.2\text{ V, R, L, DN, DP float}$	-1		1	μA
$I_{ON-AUDIO}$	On leakage current of AUDIO switch	$COM+/COM- = -3\text{ V to }3\text{ V, R, L, DN, DP float}$	-1		1	μA
I_{off}	Power off leakage	$V_{CC} = 0\text{ V}$	-1		1	μA
I_{CC}	Quiescent supply			18	35	μA
USB switches (D+, D-) ($T_A=25^\circ\text{C}$, $V_{CC}=3.3\text{V}$)						
R_{ON}	On resistance	$I_{ON} = 10\text{ mA, }V_{SW} = 0\text{ V to }V_{CC}$		3.8		Ω
R_{FLATE}	On resistance flatness	$I_{ON} = 10\text{ mA, }V_{SW} = 0\text{ V to }V_{CC}$		15		$\text{m}\Omega$
ΔR_{ON}	On resistance matching	$I_{ON} = 10\text{ mA, }V_{SW} = 0\text{ V to }V_{CC}$		100		$\text{m}\Omega$
AUDIO switches (R, L) ($T_A=25^\circ\text{C}$, $V_{CC}=3.3\text{V}$)						
R_{ON}	On resistance	$I_{ON} = 100\text{ mA, }V_{SW} = -3\text{ to }3\text{ V}$		0.8		Ω
R_{FLATE}	On resistance flatness	$I_{ON} = 100\text{ mA, }V_{SW} = -3\text{ to }3\text{ V}$		2		$\text{m}\Omega$
ΔR_{ON}	On resistance matching	$I_{ON} = 100\text{ mA, }V_{SW} = -3\text{ to }3\text{ V}$		50		$\text{m}\Omega$

DIO32020

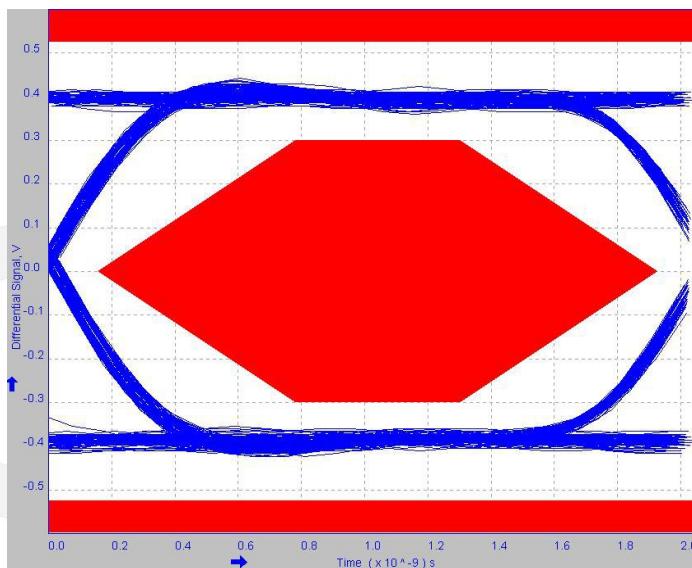
Electrical Characteristics (Continued)

All typical value are at $T_A = 25^\circ\text{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
AC parameter ($T_A = 25^\circ\text{C}$, $V_{CC} = 3.3\text{ V}$, $R_L = 50\ \Omega$, $C_L = 5\text{ pF}$, unless otherwise specified)						
t_{ON}	USB turn-on time	$DP = DN = 1.5\text{ V}$, $R_L = 50\ \Omega$, $C_L = 35\text{ pF}$		32		μs
	Audio turn-on time	$L = R = 1.5\text{ V}$, $R_L = 50\ \Omega$, $C_L = 35\text{ pF}$		32		μs
t_{OFF}	USB turn-off time	$DP = DN = 1.5\text{ V}$, $R_L = 50\ \Omega$, $C_L = 35\text{ pF}$		100		ns
	Audio turn-off time	$L = R = 1.5\text{ V}$, $R_L = 50\ \Omega$, $C_L = 35\text{ pF}$		150		ns
T_{BBM}	Break Before Make Time	Audio off to USB on		30		μs
		USB off to Audio on		30		μs
BW	-3dB bandwidth USB channel	$R_L = 50\ \Omega$, $C_L = 5\text{ pF}$		1100		MHz
OIRR	USB OFF-isolation	$V_{SW} = 1\text{ V}_{RMS}$, $R_L = 50\ \Omega$, $f = 240\text{ MHz}$		-23		dB
	Audio OFF-isolation	$V_{SW} = 1\text{ V}_{RMS}$, $R_L = 50\ \Omega$, $f = 1\text{ kHz}$		-110		dB
X_{TALK}	USB crosstalk	$R_L = 50\ \Omega$, $f = 240\text{ MHz}$		-45		dB
	Audio crosstalk	$R_L = 50\ \Omega$, $f = 1\text{ kHz}$		-80		dB
THD+N	Total harmonic distortion + noise	$R_L = 600\ \Omega$, $f = 1\text{ kHz}$, $V_{SW} = 2\text{ V}_{RMS}$, with A-weighted		-110		dB
		$R_L = 32\ \Omega$, $f = 1\text{ kHz}$, $V_{SW} = 1\text{ V}_{RMS}$, with A-weighted		-100		
		$R_L = 16\ \Omega$, $f = 1\text{ kHz}$, $V_{SW} = 0.5\text{ V}_{RMS}$, with A-weighted		-100		
PSRR	Power supply rejection ratio	$f = 10\text{ kHz}$, $R_{COM} = 50\ \Omega$		-75		dB


Capacitance ($T_A = 25^\circ\text{C}$, $V_{CC} = 3.3\text{ V}$, $R_L = 50\ \Omega$, $C_L = 5\text{ pF}$, $f = 1\text{ MHz}$, $A_{SEL} = 0\text{ V}$, unless otherwise specified)

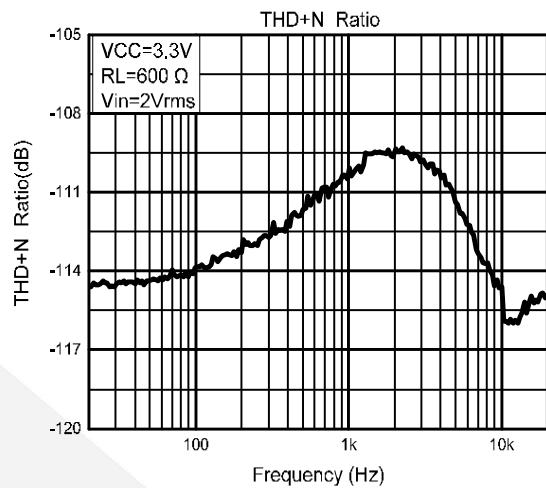
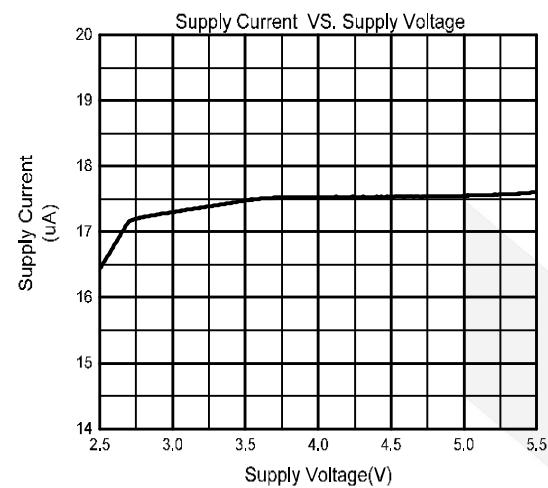
C_{IN}	A_{SEL} control input capacitance	$V_{CC} = 0\text{ V}$		2		pF
C_{ON}	USB ON capacitance	$f = 1\text{ MHz}$, $V_{BUS} = V_{DD}$, $V_{SEL} = \text{LOW}$, V_{D-} or $V_{D+} = V_{COMX} = 0\text{ V}$		7		pF


C_{ON}	Audio ON capacitance	$V_{BUS} = \text{LOW}$, $V_{SEL} = \text{LOW}$		7		pF
C_{OFF}	USB OFF capacitance	$V_{BUS} = \text{VDD}$, $V_{SEL} = \text{LOW}$		3		pF
C_{OFF}	Audio OFF capacitance	$V_{BUS} = \text{LOW}$, $V_{SEL} = \text{LOW}$		4		pF

Typical Performance Characteristics

$T_A = 25^\circ\text{C}$, $V_{CC} = 3.3\text{ V}$, unless otherwise specified.

DIO32020 USB 2.0 high speed (480 Mbps) eye pattern

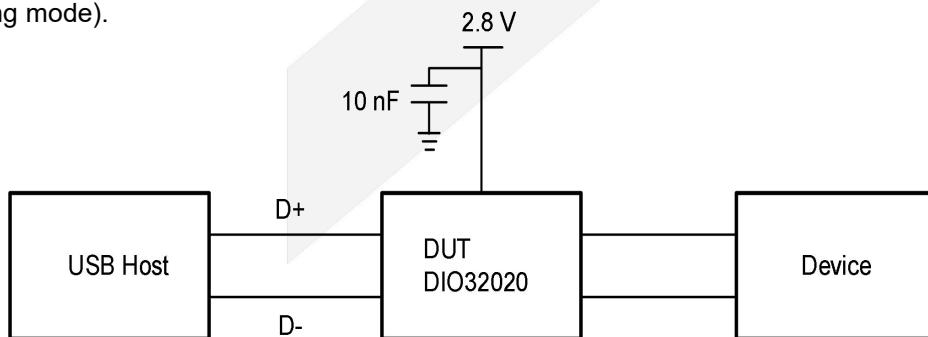



TIME SCALE (0.2 ns/DIV)

Figure 2 Eye Pattern: 480 Mbps with USB switch in signal path

DIO32020

USB2.0 High-Speed and Audio Switch with Negative Swing Capacity


Applications Design Guide

The DIO32020 is used in applications where slim and thin smartphone designs are expected. By sharing the USB connector between USB 2.0 data lines and audio headphone outputs, the designers can eliminate the use of bulky headphone jacks. Meanwhile, using the mini-USB connectors as audio outputs allows the end users to reduce the cost to buy too many types of cell phone accessories.

The DIO32020 unique architectures allow the part to have constant R_{ON} , R_{ON} (flatness) and THD performance independent of V_{CC} supply value. So in some applications such as mobile cell phone designs, if the designers want to achieve the lowest standby power consumption when the battery is turned OFF, it is highly recommended that DIO32020 be powered by 2.8 V, with no need of being powered by a battery (4.3 V) directly. This will help designers to be freed from the complex logic designs to ensure that the part will get into sleep mode.

The control pins are 1.8 V control logic compatible, so the parts can be controlled by the baseband processor GPIO directly without worrying about level shifting issues. Regarding high-speed signal integrity, the DIO32020 is recommended to be placed as close as possible to the USB controller outputs to reduce the signal reflection under high-speed mode (480 Mbps). In the meanwhile, the V_{CC} pin of the DIO32020 is required to have decoupling capacitors to reduce the supply ripples.

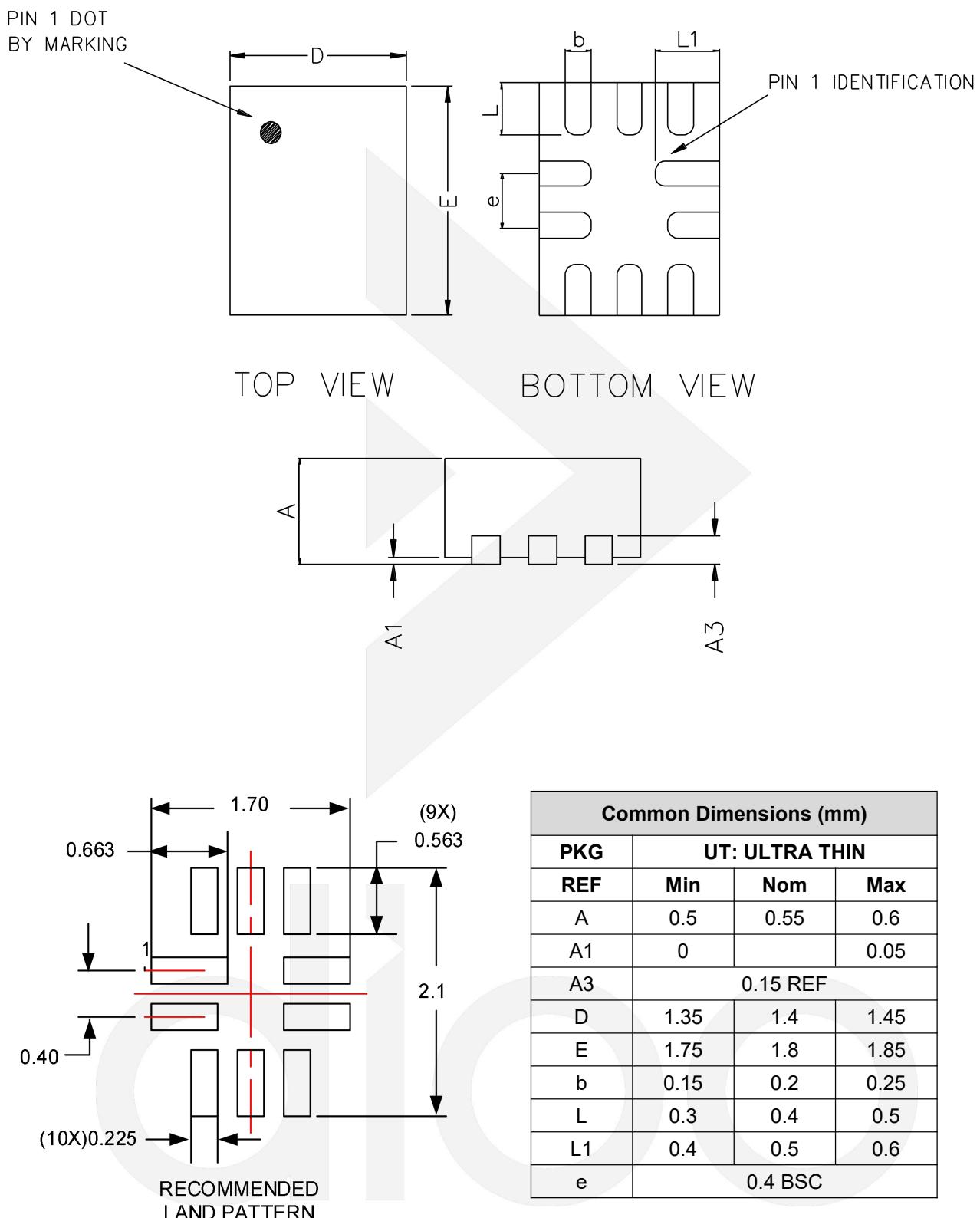
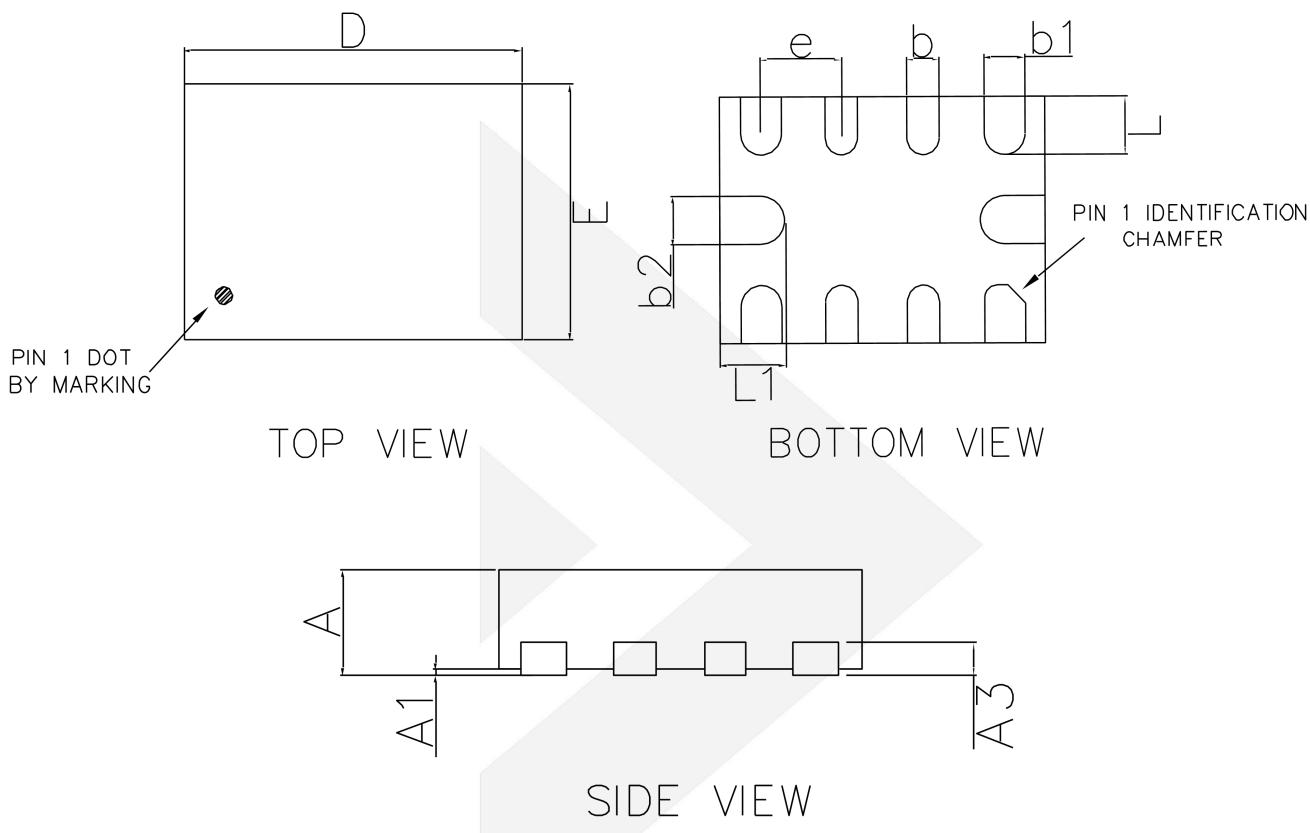
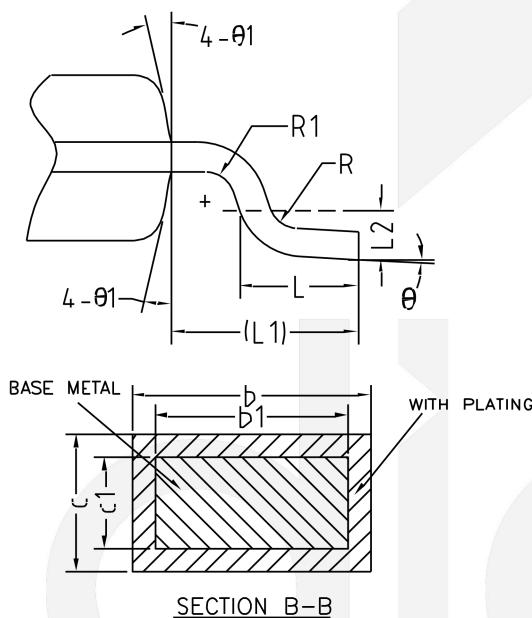
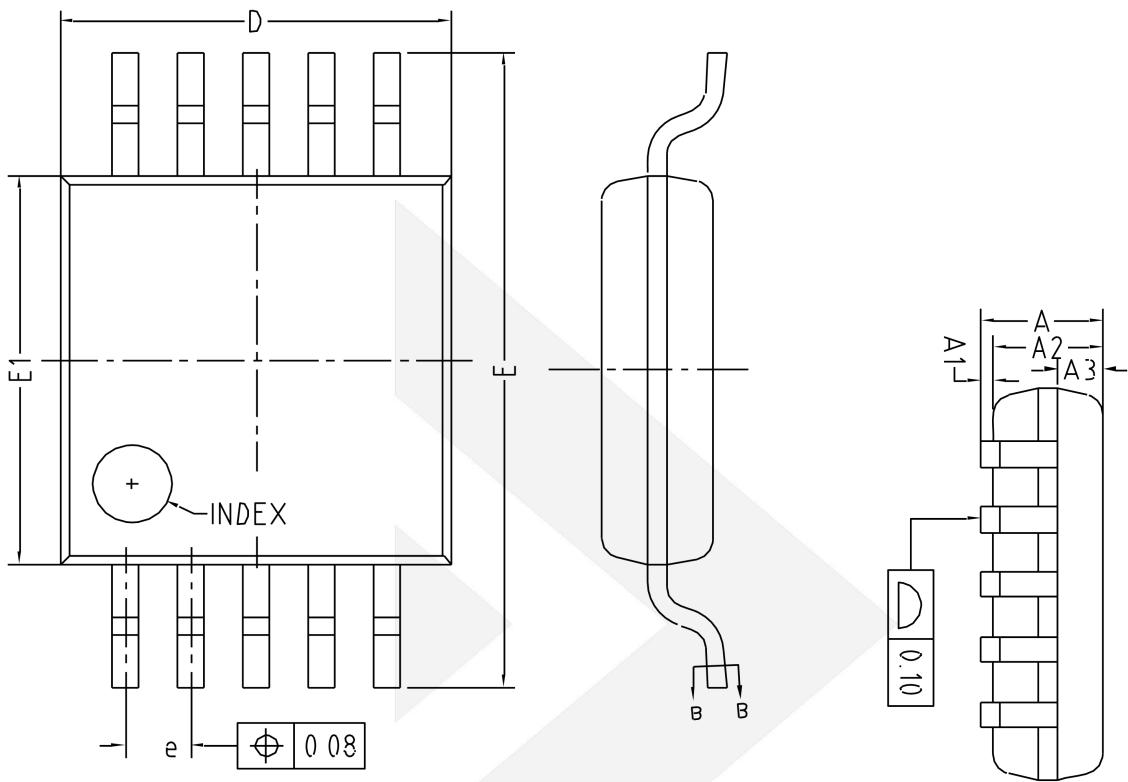

Below is the DIO32020 USB 2.0 high-speed (480 Mbps) eye diagram compliance test under near-end mode (most challenging mode).

Figure 3. USB 2.0 high speed eye diagram test circuit


The DIO32020 features not only 100 dB total harmonic distortion (THD), but also superior off isolation capability. When the DIO32020 is powered under audio mode, audio channel can pass at least -3 V negative audio signal with up to 100 dB THD performance. Under USB mode or device being powered OFF ($V_{CC} = 0$), the negative audio signal on audio ports can be isolated as well to allow flexible design needs.

Physical Dimensions: DQFN-10



Physical Dimensions: QFN-10

USB2.0 High-Speed and Audio Switch with Negative Swing Capacity

Common Dimensions (mm)			
PKG	UT: ULTRA THIN		
REF	Min	Nom	Max
A	0.50	0.55	0.60
A1	0.00		0.05
A3	0.15 REF		
D	1.95	2.00	2.05
E	1.45	1.50	1.55
b	0.15	0.20	0.25
b1	0.20	0.25	0.30
b2	0.25	0.30	0.35
L	0.30	0.35	0.40
L1	0.35	0.40	0.45
e	0.50 BSC		

Physical Dimensions: MSOP-10

Common Dimensions (mm)			
Symbol	Min	Typ	Max
A	-	-	1.10
A1	0	-	0.15
A2	0.75	0.85	0.95
A3	0.25	0.35	0.39
b	0.18	-	0.27
b1	0.17	0.20	0.23
c	0.15	-	0.20
c1	0.14	0.15	0.16
D	2.90	3.00	3.10
E	4.70	4.90	5.10
E1	2.90	3.00	3.10
e	0.40	0.50	0.60
L	0.40	0.60	0.80
L1	0.95 REF		
L2	0.25 BSC		
R	0.07	-	-
R1	0.07	-	-
θ	0°	-	8°
θ1	9°	12°	15°

CONTACT US

Dioo is a professional design and sales corporation for high-quality and performance analog semiconductors. The company focuses on industry markets, such as, cell phone, handheld products, laptop, and medical equipment and so on. Dioo's product families include analog signal processing and amplifying, LED drivers and charger IC. Go to <http://www.dioo.com> for a complete list of Dioo product families.

For additional product information, or full datasheet, please contact with our Sales Department or Representatives.

